ﻻ يوجد ملخص باللغة العربية
Dark matter axion condensates may experience stimulated decays into photon pairs. This effect has been often interpreted as a parametric resonance of photons from the axion-photon coupling, leading to an exponential growth of the photon occupation number in a narrow instability band. Most of the previous literature does not consider the possible evolution of the axion field due to the photon growth. We revisit this effect presenting a mean field solution of the axion-photon kinetic equations, in terms of number of photons and pair correlations. We study the limit of no axion depletion, recovering the known instability. Moreover, we extend the results including a possible depletion of the axion field. In this case we find that the axion condensate exhibits the behaviour of an inverted pendulum. We discuss the relevance of these effects for two different cases: an homogeneous axion field at recombination and a localized axion clump and discuss constraints that could result from the induced photon background.
Recently there has been interest in the physical properties of dark matter axion condensates. Due to gravitational attraction and self-interactions, they can organize into spatial localized clumps, whose properties were examined by us in Refs. [1, 2]
We discuss a possible principle for detecting dark matter axions in galactic halos. If axions constitute a condensate in the Milky Way, stimulated emissions of the axions from a type of excitation in condensed matter can be detectable. We provide gen
We point out that 7 keV axino dark matter (DM) in the R-parity violating (RPV) supersymmetric (SUSY) Dine-Fischler-Srednicki-Zhitnitsky model can simultaneously reproduce the 3.5keV X-ray excess, and evade stringent constraints from the Ly-alpha fore
Electromagnetic waves in a dynamical axion background exhibit superluminal group velocities at high frequencies and instabilities at low frequencies, altering how photons propagate through space. Local disturbances propagate causally, but unlike in o
In this article we propose standard model strictly forbidden decay modes, quarkonia (QQ(1^{--}) = J/psi, Upsilon) decays into two photons, as a possible signature of the space-time non-commutativity. An experimental discovery of J/psi -> gamma gamma