ﻻ يوجد ملخص باللغة العربية
We introduce a novel Recurrent Neural Network-based algorithm for future video feature generation and action anticipation called feature mapping RNN. Our novel RNN architecture builds upon three effective principles of machine learning, namely parameter sharing, Radial Basis Function kernels and adversarial training. Using only some of the earliest frames of a video, the feature mapping RNN is able to generate future features with a fraction of the parameters needed in traditional RNN. By feeding these future features into a simple multi-layer perceptron facilitated with an RBF kernel layer, we are able to accurately predict the action in the video. In our experiments, we obtain 18% improvement on JHMDB-21 dataset, 6% on UCF101-24 and 13% improvement on UT-Interaction datasets over prior state-of-the-art for action anticipation.
One of the major challenges for autonomous vehicles in urban environments is to understand and predict other road users actions, in particular, pedestrians at the point of crossing. The common approach to solving this problem is to use the motion his
We present an approach for weakly supervised learning of human actions. Given a set of videos and an ordered list of the occurring actions, the goal is to infer start and end frames of the related action classes within the video and to train the resp
In this report, the technical details of our submission to the EPIC-Kitchens Action Anticipation Challenge 2021 are given. We developed a hierarchical attention model for action anticipation, which leverages Transformer-based attention mechanism to a
Anticipating human motion depends on two factors: the past motion and the persons intention. While the first factor has been extensively utilized to forecast short sequences of human motion, the second one remains elusive. In this work we approximate
Minimally invasive surgery mainly consists of a series of sub-tasks, which can be decomposed into basic gestures or contexts. As a prerequisite of autonomic operation, surgical gesture recognition can assist motion planning and decision-making, and b