ﻻ يوجد ملخص باللغة العربية
Radar pulse streams exhibit increasingly complex temporal patterns and can no longer rely on a purely value-based analysis of the pulse attributes for the purpose of emitter classification. In this paper, we employ Recurrent Neural Networks (RNNs) to efficiently model and exploit the temporal dependencies present inside pulse streams. With the purpose of enhancing the network prediction capability, we introduce two novel techniques: a per-sequence normalization, able to mine the useful temporal patterns; and attribute-specific RNN processing, capable of processing the extracted information effectively. The new techniques are evaluated with an ablation study and the proposed solution is compared to previous Deep Learning (DL) approaches. Finally, a comparative study on the robustness of the same approaches is conducted and its results are presented.
We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted featur
Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by e
We empirically characterize the performance of discriminative and generative LSTM models for text classification. We find that although RNN-based generative models are more powerful than their bag-of-words ancestors (e.g., they account for conditiona
Purpose: To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated Magnetic Resonance Imaging (MRI) data. Methods: Scan-Specific Artifact Reduction in k-space (SPARK) trains a convolutional-neu
Recurrent neural networks (RNNs) are powerful architectures to model sequential data, due to their capability to learn short and long-term dependencies between the basic elements of a sequence. Nonetheless, popular tasks such as speech or images reco