ﻻ يوجد ملخص باللغة العربية
We construct an effective Quantum Field Theory for the wrapping effects in 1+1 dimensional models of factorised scattering. The recently developed graph-theoretical approach to TBA gives the perturbative desctiption of this QFT. For the sake of simplicity we limit ourselves to scattering matrices for a single neutral particle and no bound state poles, such as the sinh-Gordon one. On the other hand, in view of applications to AdS/CFT, we do not assume that the scattering matrix is of difference type. The effective QFT involves both bosonic and fermionic fields and possesses a symmetry which makes it one-loop exact. The corresponding path integral localises to a critical point determined by the TBA equation.
We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean h
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal bas
We study one-loop corrections to retarded and symmetric hydrostatic correlation functions within the Schwinger-Keldysh effective field theory framework for relativistic hydrodynamics, focusing on charge diffusion. We first consider the simplified set
Worldsheet techniques can be used to argue for the integrability of string theory on AdS_5xS^5/Z_S, which is dual to the strongly coupled Z_S-orbifold of N=4 SYM. We analyze the integrability of these field theories in the perturbative regime and construct the relevant Bethe equations.
The exact solutions of the $D^{(1)}_3$ model (or the $so(6)$ quantum spin chain) with either periodic or general integrable open boundary conditions are obtained by using the off-diagonal Bethe Ansatz. From the fusion, the complete operator product i