ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave-assisted coherent control of ultracold polar molecules with a ladder-type rotational states

76   0   0.0 ( 0 )
 نشر من قبل Zhonghua Ji
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have demonstrated microwave-assisted coherent control of ultracold $^{85}$Rb$^{133}$Cs molecules with a ladder-type configuration of rotational states. A probe microwave (MW) field is used to couple a lower state $X^1Sigma^+(v=0, J=1)$ and a middle state $X^1Sigma^+(v=0, J=2)$, while a control MW field couples the middle state and a upper state $X^1Sigma^+(v=0, J=3)$. In the presence of the control field, the population of middle rotational states, $X^1Sigma^+(v=0, J=2)$, can be reduced by a control MW field. Broadening of spectral splitting and shift of central frequency in this coherent spectrum are observed to be dependent on Rabi frequency of the control MW field. Applying Akaikes information criterion, we conclude that our observed coherent spectra happen through the crossover range of electromagnetically induced transparency and Aulter-Townes splitting as Rabi frequency of control field increases. Our work is a significant development in microwave-assisted quantum control of ultracold polar molecules with multilevel configuration, and also offers a great potential in quantum information based on ultracold molecules.



قيم البحث

اقرأ أيضاً

We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10-14 cm3 s-1. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)], and do not require cancelation of the long-range dipole-dipole interaction that is vital to many applications.
We investigate the use of microwave radiation to produce a repulsive shield between pairs of ultracold polar molecules and prevent collisional losses that occur when molecular pairs reach short range. We carry out coupled-channels calculations on RbC s+RbCs and CaF+CaF collisions in microwave fields. We show that effective shielding requires predominantly circular polarization, but can still be achieved with elliptical polarization that is around 90% circular.
We report the observation of microwave coherent control of rotational states of ultracold $^{85}$Rb$^{133}$Cs molecules formed in their vibronic ground state by short-range photoassociation. Molecules are formed in the single rotational state $X(v=0, J=1)$ by exciting pairs of atoms to the short-range state $(2)^{3}Pi_{0^{-}} (v=11, J=0)$, followed by spontaneous decay. We use depletion spectroscopy to record the dynamic evolution of the population distribution and observe clear Rabi oscillations while irradiating on a microwave transition between coupled neighbouring rotational levels. A density-matrix formalism that accounts for longitudinal and transverse decay times reproduces both the dynamic evolution during the coherent process and the equilibrium population. The coherent control reported here is valuable both for investigating coherent quantum effects and for applications of cold polar molecules produced by continuous short-range photoassociation.
87 - J. M. Sage 2005
We demonstrate the production of ultracold polar RbCs molecules in their vibronic ground state, via photoassociation of laser-cooled atoms followed by a laser-stimulated state transfer process. The resulting sample of $X ^1Sigma^+ (v=0)$ molecules ha s a translational temperature of $sim100 mu$K and a narrow distribution of rotational states. With the method described here it should be possible to produce samples even colder in all degrees of freedom, as well as other bi-alkali species.
We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable $^{23}$Na$^{40}$K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rota tional transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, $J{=}1$, we observe collisional lifetimes of more than $3, rm s$, comparable to those in the rovibrational ground state, $J{=}0$. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements and quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا