ترغب بنشر مسار تعليمي؟ اضغط هنا

Training DNA Perceptrons via Fractional Coding

191   0   0.0 ( 0 )
 نشر من قبل Keshab Parhi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes a novel approach to synthesize molecular reactions to train a perceptron, i.e., a single-layered neural network, with sigmoidal activation function. The approach is based on fractional coding where a variable is represented by two molecules. The synergy between fractional coding in molecular computing and stochastic logic implementations in electronic computing is key to translating known stochastic logic circuits to molecular computing. In prior work, a DNA perceptron with bipolar inputs and unipolar output was proposed for inference. The focus of this paper is on synthesis of molecular reactions for training of the DNA perceptron. A new molecular scaler that performs multiplication by a factor greater than 1 is proposed based on fractional coding. The training of the perceptron proposed in this paper is based on a modified backpropagation equation as the exact equation cannot be easily mapped to molecular reactions using fractional coding.



قيم البحث

اقرأ أيضاً

This paper considers implementation of artificial neural networks (ANNs) using molecular computing and DNA based on fractional coding. Prior work had addressed molecular two-layer ANNs with binary inputs and arbitrary weights. In prior work using fra ctional coding, a simple molecular perceptron that computes sigmoid of scaled weighted sum of the inputs was presented where the inputs and the weights lie between [-1, 1]. Even for computing the perceptron, the prior approach suffers from two major limitations. First, it cannot compute the sigmoid of the weighted sum, but only the sigmoid of the scaled weighted sum. Second, many machine learning applications require the coefficients to be arbitrarily positive and negative numbers that are not bounded between [-1, 1]; such numbers cannot be handled by the prior perceptron using fractional coding. This paper makes four contributions. First molecular perceptrons that can handle arbitrary weights and can compute sigmoid of the weighted sums are presented. Thus, these molecular perceptrons are ideal for regression applications and multi-layer ANNs. A new molecular divider is introduced and is used to compute sigmoid(ax) where a > 1. Second, based on fractional coding, a molecular artificial neural network (ANN) with one hidden layer is presented. Third, a trained ANN classifier with one hidden layer from seizure prediction application from electroencephalogram is mapped to molecular reactions and DNA and their performances are presented. Fourth, molecular activation functions for rectified linear unit (ReLU) and softmax are also presented.
62 - Bingzhe Li , Li Ou , David Du 2021
With the rapid increase of available digital data, DNA storage is identified as a storage media with high density and capability of long-term preservation, especially for archival storage systems. However, the encoding density (i.e., how many binary bits can be encoded into one nucleotide) and error handling are two major factors intertwined in DNA storage. Considering encoding density, theoretically, one nucleotide can encode two binary bits (upper bound). However, due to biochemical constraints and other necessary information associated with payload, the encoding densities of various DNA storage systems are much less than this upper bound. Additionally, all existing studies of DNA encoding schemes are based on static analysis and really lack the awareness of dynamically changed digital patterns. Therefore, the gap between the static encoding and dynamic binary patterns prevents achieving a higher encoding density for DNA storage systems. In this paper, we propose a new Digital Pattern-Aware DNA storage system, called DP-DNA, which can efficiently store digital data in DNA storage with high encoding density. DP-DNA maintains a set of encoding codes and uses a digital pattern-aware code (DPAC) to analyze the patterns of a binary sequence for a DNA strand and selects an appropriate code for encoding the binary sequence to achieve a high encoding density. An additional encoding field is added to the DNA encoding format, which can distinguish the encoding scheme used for those DNA strands, and thus we can decode DNA data back to its original digital data. Moreover, to further improve the encoding density, a variable-length scheme is proposed to increase the feasibility of the coding scheme with a high encoding density. Finally, the experimental results indicate that the proposed DP-DNA achieves up to 103.5% higher encoding densities than prior work.
The mechanical properties of DNA play a critical role in many biological functions. For example, DNA packing in viruses involves confining the viral genome in a volume (the viral capsid) with dimensions that are comparable to the DNA persistence leng th. Similarly, eukaryotic DNA is packed in DNA-protein complexes (nucleosomes) in which DNA is tightly bent around protein spools. DNA is also tightly bent by many proteins that regulate transcription, resulting in a variation in gene expression that is amenable to quantitative analysis. In these cases, DNA loops are formed with lengths that are comparable to or smaller than the DNA persistence length. The aim of this review is to describe the physical forces associated with tightly bent DNA in all of these settings and to explore the biological consequences of such bending, as increasingly accessible by single-molecule techniques.
This paper studies spatial diversity techniques applied to multiple-input multiple-output (MIMO) diffusion-based molecular communications (DBMC). Two types of spatial coding techniques, namely Alamouti-type coding and repetition MIMO coding are sugge sted and analyzed. In addition, we consider receiver-side equal-gain combining, which is equivalent to maximum-ratio combining in symmetrical scenarios. For numerical analysis, the channel impulse responses of a symmetrical $2 times 2$ MIMO-DBMC system are acquired by a trained artificial neural network. It is demonstrated that spatial diversity has the potential to improve the system performance and that repetition MIMO coding outperforms Alamouti-type coding.
As the global need for large-scale data storage is rising exponentially, existing storage technologies are approaching their theoretical and functional limits in terms of density and energy consumption, making DNA based storage a potential solution f or the future of data storage. Several studies introduced DNA based storage systems with high information density (petabytes/gram). However, DNA synthesis and sequencing technologies yield erroneous outputs. Algorithmic approaches for correcting these errors depend on reading multiple copies of each sequence and result in excessive reading costs. The unprecedented success of Transformers as a deep learning architecture for language modeling has led to its repurposing for solving a variety of tasks across various domains. In this work, we propose a novel approach for single-read reconstruction using an encoder-decoder Transformer architecture for DNA based data storage. We address the error correction process as a self-supervised sequence-to-sequence task and use synthetic noise injection to train the model using only the decoded reads. Our approach exploits the inherent redundancy of each decoded file to learn its underlying structure. To demonstrate our proposed approach, we encode text, image and code-script files to DNA, produce errors with high-fidelity error simulator, and reconstruct the original files from the noisy reads. Our model achieves lower error rates when reconstructing the original data from a single read of each DNA strand compared to state-of-the-art algorithms using 2-3 copies. This is the first demonstration of using deep learning models for single-read reconstruction in DNA based storage which allows for the reduction of the overall cost of the process. We show that this approach is applicable for various domains and can be generalized to new domains as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا