ﻻ يوجد ملخص باللغة العربية
Silicon crystal puller (SCP) is a key equipment in silicon wafer manufacture, which is, in turn, the base material for the most currently used integrated circuit (IC) chips. With the development of the techniques, the demand for longer mono-silicon crystal rod with larger diameter is continuously increasing in order to reduce the manufacture time and the price of the wafer. This demand calls for larger SCP with increasing height, however, it causes serious swing phenomenon of the crystal seed. The strong swing of the seed causes difficulty in the solidification and increases the risk of mono-silicon growth failure.The main aim of this paper is to analyze the nonlinear dynamics in the FSRL system of the SCP. A mathematical model for the swing motion of the FSRL system is derived. The influence of relevant parameters, such as system damping, excitation amplitude and rotation speed, on the stability and the responses of the system are analyzed. The stability of the equilibrium, bifurcation and chaotic motion are demonstrated, which are often observed in practical situations. Melnikov method is used to derive the possible parameter region that leads to chaotic motion. Three routes to chaos are identified in the FSRL system, including period doubling, symmetry-breaking bifurcation and interior crisis. The work in this paper explains the complex dynamics in the FSRL system of the SCP, which will be helpful for the SCP designers in order to avoid the swing phenomenon in the SCP.
Chaos is shown to occur in the flexible shaft rotating-lifting (FSRL) system of the mono-silicon crystal puller. Chaos is, however, harmful for the quality of mono-silicon crystal production. Therefore, it should be suppressed. Many chaos control met
The model system manifesting phenomena peculiar to complex analytic maps is offered. The system is a non-autonomous ring cavity with nonlinear elements and filters,
Czochralski-grown silicon crystals were studied by the techniques of the low-angle mid-IR-light scattering and electron-beam-induced current. The large-scale accumulations of electrically-active impurities detected in this material were found to be d
Recently the phase space structures governing reaction dynamics in Hamiltonian systems have been identified and algorithms for their explicit construction have been developed. These phase space structures are induced by saddle type equilibrium points
Electrically detected magnetic resonance is used to identify recombination centers in a set of Czochralski grown silicon samples processed to contain strained oxide precipitates with a wide range of densities (~ 1e9 cm-3 to ~ 7e10 cm-3). Measurements