ﻻ يوجد ملخص باللغة العربية
Common fairness definitions in machine learning focus on balancing notions of disparity and utility. In this work, we study fairness in the context of risk disparity among sub-populations. We are interested in learning models that minimize performance discrepancies across sensitive groups without causing unnecessary harm. This is relevant to high-stakes domains such as healthcare, where non-maleficence is a core principle. We formalize this objective using Pareto frontiers, and provide analysis, based on recent works in fairness, to exemplify scenarios were perfect fairness might not be feasible without doing unnecessary harm. We present a methodology for training neural networks that achieve our goal by dynamically re-balancing subgroups risks. We argue that even in domains where fairness at cost is required, finding a non-unnecessary-harm fairness model is the optimal initial step. We demonstrate this methodology on real case-studies of predicting ICU patient mortality, and classifying skin lesions from dermatoscopic images.
The potential for learned models to amplify existing societal biases has been broadly recognized. Fairness-aware classifier constraints, which apply equality metrics of performance across subgroups defined on sensitive attributes such as race and gen
Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performance in many tasks such as image classification and language understanding. However, most existing works only optimize for model accuracy and largely igno
Multi-Task Learning (MTL) is a well-established paradigm for training deep neural network models for multiple correlated tasks. Often the task objectives conflict, requiring trade-offs between them during model building. In such cases, MTL models can
In the application of machine learning to real-life decision-making systems, e.g., credit scoring and criminal justice, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness. The commonly used stra
The demand for same-day delivery (SDD) has increased rapidly in the last few years and has particularly boomed during the COVID-19 pandemic. Existing literature on the problem has focused on maximizing the utility, represented as the total number of