ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the High-Mass End of the Stellar Mass Function of Star Forming Galaxies at Cosmic Noon

101   0   0.0 ( 0 )
 نشر من قبل Sydney Sherman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the high-mass end of the galaxy stellar mass function using the largest sample to date (5,352) of star-forming galaxies with $M_{star} > 10^{11} M_{odot}$ at cosmic noon, $1.5 < z < 3.5$. This sample is uniformly selected across 17.2 deg$^2$ ($sim$0.44 Gpc$^3$ comoving volume from $1.5 < z < 3.5$), mitigating the effects of cosmic variance and encompassing a wide range of environments. This area, a factor of 10 larger than previous studies, provides robust statistics at the high-mass end. Using multi-wavelength data in the Spitzer/HETDEX Exploratory Large Area (SHELA) footprint we find that the SHELA footprint star-forming galaxy stellar mass function is steeply declining at the high-mass end probing values as high as $sim$$10^{-4}$ Mpc$^3$/dex and as low as $sim$5$times$$10^{-8}$ Mpc$^3$/dex across a stellar mass range of log($M_star$/$M_odot$) $sim$ 11 - 12. We compare our empirical star-forming galaxy stellar mass function at the high mass end to three types of numerical models: hydrodynamical models from IllustrisTNG, abundance matching from the UniverseMachine, and three different semi-analytic models (SAMs; SAG, SAGE, GALACTICUS). At redshifts $1.5 < z < 3.5$ we find that results from IllustrisTNG and abundance matching models agree within a factor of $sim$2 to 10, however the three SAMs strongly underestimate (up to a factor of 1,000) the number density of massive galaxies. We discuss the implications of these results for our understanding of galaxy evolution.



قيم البحث

اقرأ أيضاً

Star-forming clumps dominate the rest-frame ultraviolet morphology of galaxies at the peak of cosmic star formation. If turbulence driven fragmentation is the mechanism responsible for their formation, we expect their stellar mass function to follow a power-law of slope close to $-2$. We test this hypothesis performing the first analysis of the stellar mass function of clumps hosted in galaxies at $zsim 1-3.5$. The clump sample is gathered from the literature with similar detection thresholds and stellar masses determined in a homogeneous way. To overcome the small number statistics per galaxy (each galaxy hosts up to a few tens of clumps only), we combine all high-redshift clumps. The resulting clump mass function follows a power-law of slope $sim -1.7$ and flattens at masses below $2times 10^7$ M$_{odot}$. By means of randomly sampled clump populations, drawn out of a power-law mass function of slope $-2$, we test the effect of combining small clump populations, detection limits of the surveys, and blending on the mass function. Our numerical exercise reproduces all the features observed in the real clump mass function confirming that it is consistent with a power-law of slope $simeq -2$. This result supports the high-redshift clump formation through fragmentation in a similar fashion as in local galaxies, but under different gas conditions.
We investigate the relation between AGN and star formation (SF) activity at $0.5 < z < 3$ by analyzing 898 galaxies with X-ray luminous AGN ($L_X > 10^{44}$ erg s$^{-1}$) and a large comparison sample of $sim 320,000$ galaxies without X-ray luminous AGN. Our samples are selected from a large (11.8 deg$^2$) area in Stripe 82 that has multi-wavelength (X-ray to far-IR) data. The enormous comoving volume ($sim 0.3$ Gpc$^3$) at $0.5 < z < 3$ minimizes the effects of cosmic variance and captures a large number of massive galaxies ($sim 30,000$ galaxies with $M_* > 10^{11} M_{odot}$) and X-ray luminous AGN. While many galaxy studies discard AGN hosts, we fit the SED of galaxies with and without X-ray luminous AGN with Code Investigating GALaxy Emission (CIGALE) and include AGN emission templates. We find that without this inclusion, stellar masses and star formation rates (SFRs) in AGN host galaxies can be overestimated, on average, by factors of up to $sim 5$ and $sim 10$, respectively. The average SFR of galaxies with X-ray luminous AGN is higher by a factor of $sim 3$ to $10$ compared to galaxies without X-ray luminous AGN at fixed stellar mass and redshift, suggesting that high SFRs and high AGN X-ray luminosities may be fueled by common mechanisms. The vast majority ($> 95 %$) of galaxies with X-ray luminous AGN at $z=0.5-3$ do not show quenched SF: this suggests that if AGN feedback quenches SF, the associated quenching process takes a significant time to act and the quenched phase sets in after the highly luminous phases of AGN activity.
By using the deepest available mid and far infrared surveys in the CANDELS, GOODS and COSMOS fields we study the evolution of the Main Sequence (MS) of star forming galaxies (SFGs) from z~0 to` ~2.5 at stellar masses larger than 10^{10} M_{odot}. The MS slope and scatter are consistent with a re-scaled version of the local relation and distribution, shifted at higher values of SFR according to ~(1+z)^{3.2}. The relation exhibits a bending at the high mass end and a slightly increasing scatter as a function of the stellar mass. We show that the previously reported evolution of the MS slope, in the considered mass and redshift range, is due to a selection effect. The distribution of galaxies in the MS region at fixed stellar mass is well represented by a single log-normal distribution at all redshifts and masses, with starburst galaxies (SBs) occupying the tail at high SFR.
Recent estimates point to abundances of z > 4 sub-millimeter (sub-mm) galaxies far above model predictions. The matter is still debated. According to some analyses the excess may be substantially lower than initially thought and perhaps accounted for by flux boosting and source blending. However, there is no general agreement on this conclusion. An excess of z > 6 dusty galaxies has also been reported albeit with poor statistics. On the other hand, evidence of a top-heavy initial mass function (IMF) in high-z starburst galaxies has been reported in the past decades. This would translate into a higher sub-mm luminosity of dusty galaxies at fixed star formation rate, i.e., into a higher abundance of bright high-z sub-mm galaxies than expected for a universal Chabrier IMF. Exploiting our physical model for high-z proto-spheroidal galaxies, we find that part of the excess can be understood in terms of an IMF somewhat top-heavier than Chabrier. Such IMF is consistent with that recently proposed to account for the low 13C/18O abundance ratio in four dusty starburst galaxies at z = 2-3. However, extreme top-heavy IMFs are inconsistent with the sub-mm counts at z > 4.
We report a Giant Metrewave Radio Telescope (GMRT) search for HI 21cm emission from a large sample of star-forming galaxies at $z approx 1.18 - 1.34$, lying in sub-fields of the DEEP2 Redshift Survey. The search was carried out by co-adding (stacking ) the HI 21cm emission spectra of 857 galaxies, after shifting each galaxys HI 21cm spectrum to its rest frame. We obtain the $3sigma$ upper limit S$_{rm{HI}} < 2.5 mu$Jy on the average HI 21cm flux density of the 857 galaxies, at a velocity resolution of $approx 315$ km s$^{-1}$. This yields the $3sigma$ constraint M$_{rm{HI}} < 2.1 times 10^{10} times left[Delta {rm V}/315 rm{km/s} right]^{1/2} textrm{M}_odot$ on the average HI mass of the 857 stacked galaxies, the first direct constraint on the atomic gas mass of galaxies at $z > 1$. The implied limit on the average atomic gas mass fraction (relative to stars) is ${rm M}_{rm GAS}/{rm M}_* < 0.5$, comparable to the cold molecular gas mass fraction in similar star-forming galaxies at these redshifts. We find that the cosmological mass density of neutral atomic gas in massive star-forming galaxies at $z approx 1.3$ is $Omega_{rm GAS} < 3.7 times 10^{-4}$, significantly lower than $Omega_{rm GAS}$ estimates in both galaxies in the local Universe and damped Lyman-$alpha$ absorbers at $z geq 2.2$. Massive blue star-forming galaxies thus do not appear to dominate the neutral atomic gas content of the Universe at $z approx 1.3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا