ترغب بنشر مسار تعليمي؟ اضغط هنا

A narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration

69   0   0.0 ( 0 )
 نشر من قبل Chao Xiang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon nitride (Si3N4), as a complementary metal-oxide-semiconductor (CMOS) material, finds wide use in modern integrated circuit (IC) technology. The past decade has witnessed tremendous development of Si3N4 in photonic areas, with innovations in nonlinear photonics, optical sensing, etc. However, the lack of an integrated laser with high performance prohibits the large-scale integration of Si3N4 waveguides into complex photonic integrated circuits (PICs). Here, we demonstrate a novel III-V/Si/Si3N4 structure to enable efficient electrically pumped lasing in a Si3N4 based laser external cavity. The laser shows superior temperature stability and low phase noise compared with lasers purely dependent on semiconductors. Beyond this, the demonstrated multilayer heterogeneous integration provides a practical path to incorporate efficient optical gain with various low-refractive-index materials. Multilayer heterogeneous integration could extend the capabilities of semiconductor lasers to improve performance and enable a new class of devices such as integrated optical clocks and optical gyroscopes.



قيم البحث

اقرأ أيضاً

We report on the implementation of a high fidelity universal gate-set on optical qubits based on trapped $^{88}$Sr$^+$ ions for the purpose of quantum information processing. All coherent operations were performed using a narrow linewidth diode laser . We employed a master-slave configuration for the laser, where an ultra low expansion glass (ULE) Fabry-Perot cavity is used as a stable reference as well as a spectral filter. We characterized the laser spectrum using the ions with a modified Ramsey sequence which eliminated the affect of the magnetic field noise. We demonstrated high fidelity single qubit gates with individual addressing, based on inhomogeneous micromotion, on a two-ion chain as well as the M{o}lmer-S{o}rensen two-qubit entangling gate.
Demand for low-noise, continuous-wave, frequency-tunable lasers based on semiconductor integrated photonics has been advancing in support of numerous applications. In particular, an important goal is to achieve narrow spectral linewidth, commensurate with bulk-optic or fiber-optic laser platforms. Here, we report on laser-frequency-stabilization experiments with a heterogeneously integrated III/V-Si widely tunable laser and a high-finesse, thermal-noise-limited photonic resonator. This hybrid architecture offers a chip-scale optical-frequency reference with an integrated linewidth of 60 Hz and a fractional frequency stability of 2.5e-13 at 1-second integration time. We explore the potential for stabilization with respect to a resonator with lower thermal noise by characterizing laser-noise contributions such as residual amplitude modulation and photodetection noise. Widely tunable, compact and integrated, cost effective, stable and narrow linewidth lasers are envisioned for use in various fields, including communication, spectroscopy, and metrology.
Ultralow noise, yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include LIDAR, coherent commun ications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to $7.8times10^{-14} 1/sqrt{Hz}$ at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our dual-microcavity laser by performing optical spectroscopy with hertz-level resolution.
We developed a technique that enables to replace a metallic waveguide cladding with a low-index (n $sim$ 1.4) material - CaF2 or BaF2 - that in addition is transparent from the mid-IR up to the visible range: elevated confinement is preserved while i ntroducing an optical entryway through the substrate. Replacing the metallic backplane also allows double-side patterning of the active region. Using this approach, we demonstrate strong light-matter coupling between an intersubband transition (lambda $sim$ 10 microns) and a dispersive resonator, at 300 K and at 78 K. Finally, we evaluate the potential of this approach as a platform for waveguiding in the mid-IR spectral range, with numerical simulations that reveal losses in the 1-10 cm$^{-1}$ range.
We demonstrate a hybrid integrated and widely tunable diode laser with an intrinsic linewidth as narrow as 40 Hz, achieved with a single roundtrip through a low-loss feedback circuit that extends the cavity length to 0.5 meter on a chip. Employing so lely dielectrics for single-roundtrip, single-mode resolved feedback filtering enables linewidth narrowing with increasing laser power, without limitations through nonlinear loss. We achieve single-frequency oscillation with up to 23 mW fiber coupled output power, 70-nm wide spectral coverage in the 1.55 $mu$m wavelength range with 3 mW output, and obtain more than 60 dB side mode suppression. Such properties and options for further linewidth narrowing render the approach of high interest for direct integration in photonic circuits serving microwave photonics, coherent communications, sensing and metrology with highest resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا