ترغب بنشر مسار تعليمي؟ اضغط هنا

TCAD modeling for SiGe HBT THz detectors

77   0   0.0 ( 0 )
 نشر من قبل Xueqing Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Terahertz (THz) response of transistor and integrated circuit yields important information about device parameters and has been used for distinguishing between working and defective transistors and circuits. Using a TCAD model for SiGe HBTs we simulate their current-voltage characteristics and their response to sub-THz (300,GHz) radiation. Applying different mixed mode schemes in TCAD, we simulated the dynamic range of the THz response for SiGe HBTs and showed that it is comparable with that of the TeraFET detectors. The HBT response to the variations of the detector design parameters are investigated at different frequencies with the harmonic balance simulation in TCAD. These results are useful for the physical design and optimization for the HBT THz detectors and for the identification of faulty SiGe HBT and Si BiCMOS circuits using sub-THz or THz scanning.



قيم البحث

اقرأ أيضاً

We present technology computer-aided design (TCAD) models for AlGaAs/InGaAs and AlGaN/GaN and silicon TeraFETs, plasmonic field effect transistors (FETs), for terahertz (THz) detection validated over a wide dynamic range. The modeling results are in good agreement with the experimental data for the AlGaAs/InGaAs heterostructure FETs (HFETs) and, to the low end of the dynamic range, with the analytical theory of the TeraFET detectors. The models incorporate the response saturation effect at high intensities of the THz radiation observed in experiments and reveal the physics of the response saturation associated with different mechanisms for different material systems. These mechanisms include the gate leakage, the velocity saturation and the avalanche effect.
266 - Tao Yang , Kewei Wu , Mei Zhao 2021
We report a precise TCAD simulation for low gain avalanche detector (LGAD) with calibration by secondary ion mass spectroscopy (SIMS). The radiation model - LGAD Radiation Damage Model (LRDM) combines local acceptor degeneration with global deep ener gy levels is proposed. The LRDM could predict the leakage current level and the behavior of capacitance for irradiated LGAD sensor at -30 $^{circ}$C after irradiation fluence $rm Phi_{eq}=2.5 times 10^{15} ~n_{eq}/cm^{2}$.
A new approach for image reconstruction in THz computed tomography (THz-CT) is presented. Based on a geometrical optics model containing the THz signal amplitude and phase, a novel algorithm for extracting an average phase from the measured THz signa ls is derived. Applying the algorithm results in a phase-contrast sinogram, which is further used for image reconstruction. For experimental validation, a fast THz time-domain spectrometer (THz-TDS) in transmission geometry is employed, enabling CT measurements within several minutes. Quantitative evaluation of reconstructed 3D printed plastic profiles reveals the potential of our approach in non-destructive testing of plastic profiles.
We report electroluminescence originating from L-valley transitions in n-type Ge/Si$_{0.15}$Ge$_{0.85}$ quantum cascade structures centered at 3.4 and 4.9 THz with a line broadening of $Delta f/f approx 0.2$. Three strain-compensated heterostructures , grown on a Si substrate by ultrahigh vacuum chemical vapor deposition, have been investigated. The design is based on a single quantum well active region employing a vertical optical transition and the observed spectral features are well described by non-equilibrium Greens function calculations. The presence of two peaks highlights a suboptimal injection in the upper state of the radiative transition. Comparison of the electroluminescence spectra with similar GaAs/AlGaAs structure yields one order of magnitude lower emission efficiency.
77 - Xin Wen 2021
The intrinsic performance of type-II InP/GaAsSb double heterojunction bipolar transistors (DHBTs) towards and beyond THz is predicted and analyzed based on a multi-scale technology computer aided design (TCAD) modeling platform calibrated against exp erimental measurements. Two-dimensional hydrodynamic simulations are combined with 1-D full-band, atomistic quantum transport calculations to shed light on future DHBT generations whose dimensions are decreased step-by-step, starting from the current device configuration. Simulations predict that a peak transit frequency $f_{T,peak}$ of around 1.6 THz could be reached in aggressively scaled type-II DHBTs with a total thickness of 256 nm and an emitter width $W_E$ of 37.5 nm. The corresponding breakdown voltage $BV_{CEO}$ is estimated to be 2.2 V. The investigations are put in perspective with two DHBT performance limiting factors, self-heating and breakdown characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا