ﻻ يوجد ملخص باللغة العربية
While Visual Question Answering (VQA) models continue to push the state-of-the-art forward, they largely remain black-boxes - failing to provide insight into how or why an answer is generated. In this ongoing work, we propose addressing this shortcoming by learning to generate counterfactual images for a VQA model - i.e. given a question-image pair, we wish to generate a new image such that i) the VQA model outputs a different answer, ii) the new image is minimally different from the original, and iii) the new image is realistic. Our hope is that providing such counterfactual examples allows users to investigate and understand the VQA models internal mechanisms.
VQA models may tend to rely on language bias as a shortcut and thus fail to sufficiently learn the multi-modal knowledge from both vision and language. Recent debiasing methods proposed to exclude the language prior during inference. However, they fa
In this paper, we introduce a new dataset consisting of 360,001 focused natural language descriptions for 10,738 images. This dataset, the Visual Madlibs dataset, is collected using automatically produced fill-in-the-blank templates designed to gathe
Humans accumulate knowledge in a lifelong fashion. Modern deep neural networks, on the other hand, are susceptible to catastrophic forgetting: when adapted to perform new tasks, they often fail to preserve their performance on previously learned task
We introduce a simple but effective unsupervised method for generating realistic and diverse images. We train a class-conditional GAN model without using manually annotated class labels. Instead, our model is conditional on labels automatically deriv
Despite the recent success of face image generation with GANs, conditional hair editing remains challenging due to the under-explored complexity of its geometry and appearance. In this paper, we present MichiGAN (Multi-Input-Conditioned Hair Image GA