ﻻ يوجد ملخص باللغة العربية
In this paper we study cosmological perturbations in teleparallel gravity. We discuss problems which appear in standard approach to $f(T)$ gravity, and find that these problems may be solved within covariant formulation of teleparallel gravity, which take into account spin connection. We calculate spin connection which symmetrize equation for perturbation and split diagonal and non-diagonal part of equation of motion. We demonstrate that there is minimal solution for spin connection, which lead to zero slip, however, in this case one additional equation appears, so the system may become over-determined. After that, we show that a more general solution exists, which is incompatible with zero slip, but allows to write down the equations of motion for cosmological perturbation in a self-consistent way without additional equations to be satisfied.
We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f(T) an
We investigate the cosmological applications of $F(T,T_G)$ gravity, which is a novel modified gravitational theory based on the torsion invariant $T$ and the teleparallel equivalent of the Gauss-Bonnet term $T_{G}$. $F(T,T_{G})$ gravity differs from
In this paper we study cosmological solutions of the $f(T,B)$ gravity using dynamical system analyses. For this purpose we consider cosmological viable functions of $f(T,B)$ that are capable of reproducing the dynamics of the Universe. We present thr
The recent article entitled Cosmological inviability of $f(R,T)$ gravity [Phys. Rev. D 95 (2017) 123536], by H. Velten and T.R.P. Caram^es, claims that the reference A transition from a decelerated to an accelerated phase of the universe expansion fr
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metr