ترغب بنشر مسار تعليمي؟ اضغط هنا

All-Spin Bayesian Neural Networks

123   0   0.0 ( 0 )
 نشر من قبل Abhronil Sengupta
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Probabilistic machine learning enabled by the Bayesian formulation has recently gained significant attention in the domain of automated reasoning and decision-making. While impressive strides have been made recently to scale up the performance of deep Bayesian neural networks, they have been primarily standalone software efforts without any regard to the underlying hardware implementation. In this paper, we propose an All-Spin Bayesian Neural Network where the underlying spintronic hardware provides a better match to the Bayesian computing models. To the best of our knowledge, this is the first exploration of a Bayesian neural hardware accelerator enabled by emerging post-CMOS technologies. We develop an experimentally calibrated device-circuit-algorithm co-simulation framework and demonstrate $24times$ reduction in energy consumption against an iso-network CMOS baseline implementation.



قيم البحث

اقرأ أيضاً

Backpropagation through nonlinear neurons is an outstanding challenge to the field of optical neural networks and the major conceptual barrier to all-optical training schemes. Each neuron is required to exhibit a directionally dependent response to p ropagating optical signals, with the backwards response conditioned on the forward signal, which is highly non-trivial to implement optically. We propose a practical and surprisingly simple solution that uses saturable absorption to provide the network nonlinearity. We find that the backward propagating gradients required to train the network can be approximated in a pump-probe scheme that requires only passive optical elements. Simulations show that, with readily obtainable optical depths, our approach can achieve equivalent performance to state-of-the-art computational networks on image classification benchmarks, even in deep networks with multiple sequential gradient approximations. This scheme is compatible with leading optical neural network proposals and therefore provides a feasible path towards end-to-end optical training.
We propose a new network architecture for standard spin-Hall magnetic tunnel junction-based spintronic neurons that allows them to compute multiple critical convolutional neural network functionalities simultaneously and in parallel, saving space and time. An approximation to the Rectified Linear Unit transfer function and the local pooling function are computed simultaneously with the convolution operation itself. A proof-of-concept simulation is performed on the MNIST dataset, achieving up to 98% accuracy at a cost of less than 1 nJ for all convolution, activation and pooling operations combined. The simulations are remarkably robust to thermal noise, performing well even with very small magnetic layers.
In recent times, neural networks have become a powerful tool for the analysis of complex and abstract data models. However, their introduction intrinsically increases our uncertainty about which features of the analysis are model-related and which ar e due to the neural network. This means that predictions by neural networks have biases which cannot be trivially distinguished from being due to the true nature of the creation and observation of data or not. In order to attempt to address such issues we discuss Bayesian neural networks: neural networks where the uncertainty due to the network can be characterised. In particular, we present the Bayesian statistical framework which allows us to categorise uncertainty in terms of the ingrained randomness of observing certain data and the uncertainty from our lack of knowledge about how data can be created and observed. In presenting such techniques we show how errors in prediction by neural networks can be obtained in principle, and provide the two favoured methods for characterising these errors. We will also describe how both of these methods have substantial pitfalls when put into practice, highlighting the need for other statistical techniques to truly be able to do inference when using neural networks.
Convolutional Neural Networks (CNNs) are a class of Artificial Neural Networks(ANNs) that employ the method of convolving input images with filter-kernels for object recognition and classification purposes. In this paper, we propose a photonics circu it architecture which could consume a fraction of energy per inference compared with state of the art electronics.
Quantum machine learning promises great speedups over classical algorithms, but it often requires repeated computations to achieve a desired level of accuracy for its point estimates. Bayesian learning focuses more on sampling from posterior distribu tions than on point estimation, thus it might be more forgiving in the face of additional quantum noise. We propose a quantum algorithm for Bayesian neural network inference, drawing on recent advances in quantum deep learning, and simulate its empirical performance on several tasks. We find that already for small numbers of qubits, our algorithm approximates the true posterior well, while it does not require any repeated computations and thus fully realizes the quantum speedups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا