ترغب بنشر مسار تعليمي؟ اضغط هنا

NuSTAR Uncovers an Extremely Local Compton-thick AGN in NGC 4968

88   0   0.0 ( 0 )
 نشر من قبل Stephanie LaMassa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of Chandra and NuSTAR spectra of NGC 4968, a local (D$sim$44 Mpc) 12$mu$m-selected Seyfert 2 galaxy, enshrouded within Compton-thick layers of obscuring gas. We find no evidence of variability between the Chandra and NuSTAR observations (separated by 2 years), and between the two NuSTAR observations (separated by 10 months). Using self-consistent X-ray models, we rule out the scenario where the obscuring medium is nearly spherical and uniform, contradicting the results implied by the $<$10 keV Chandra spectrum. The line-of-sight column density, from intervening matter between the source and observer that intercepts the intrinsic AGN X-ray emission, is well within the Compton-thick regime, with a minimum column density of $2times10^{24}$ cm$^{-2}$. The average global column density is high ($> 3times10^{23}$ cm$^{-2}$), with both Compton-thick and Compton-thin solutions permitted depending on the X-ray spectral model. The spectral models provide a range of intrinsic AGN continuum parameters and implied 2-10 keV luminosities ($L_{rm 2-10keV,intrinsic}$), where the higher end of $L_{rm 2-10keV,intrinsic}$ is consistent with expectations from the 12$mu$m luminosity ($L_{rm 2-10keV,intrinisc} sim 7times10^{42}$ erg s$^{-1}$). Compared with Compton-thick AGN previously observed by {it NuSTAR}, NGC 4968 is among the most intrinsically X-ray luminous. However, despite its close proximity and relatively high intrinsic X-ray luminosity, it is undetected by the 105 month Swift-BAT survey, underscoring the importance of multi-wavelength selection for obtaining the most complete census of the most hidden black holes.



قيم البحث

اقرأ أيضاً

We present X-ray spectral analyses for three Seyfert 2 active galactic nuclei, NGC 424, NGC 1320, and IC 2560, observed by NuSTAR in the 3-79 keV band. The high quality hard X-ray spectra allow detailed modeling of the Compton reflection component fo r the first time in these sources. Using quasi-simultaneous NuSTAR and Swift/XRT data, as well as archival XMM-Newton data, we find that all three nuclei are obscured by Compton-thick material with column densities in excess of ~5 x $10^{24}$ cm$^{-2}$, and that their X-ray spectra above 3 keV are dominated by reflection of the intrinsic continuum on Compton-thick material. Due to the very high obscuration, absorbed intrinsic continuum components are not formally required by the data in any of the sources. We constrain the intrinsic photon indices and the column density of the reflecting medium through the shape of the reflection spectra. Using archival multi-wavelength data we recover the intrinsic X-ray luminosities consistent with the broadband spectral energy distributions. Our results are consistent with the reflecting medium being an edge-on clumpy torus with a relatively large global covering factor and overall reflection efficiency of the order of 1%. Given the unambiguous confirmation of the Compton-thick nature of the sources, we investigate whether similar sources are likely to be missed by commonly used selection criteria for Compton-thick AGN, and explore the possibility of finding their high-redshift counterparts.
176 - P. Gandhi 2014
We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66 month Sw ift/BAT all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width >~1 keV. Fitting the broadband spectra with physical reflection models shows the source to be a bona fide Compton thick AGN with Nh of at least 2x10^{24} cm^{-2} and absorption-corrected 2-10 keV X-ray power L(2-10) ~ few times 10^{42} erg s^{-1}. Realistic uncertainties on L(2-10) computed from the joint confidence interval on the intrinsic power law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton thick AGN population is highly heterogeneous in terms of WISE mid-infrared source colours, and the nucleus of NGC 4785 appears especially sub-dominant in the mid-infrared when comparing to other Compton thick AGN. Such sources would not be easily found using mid-infrared selection alone. The extent of host galaxy extinction to the nucleus is not clear, though NGC 4785 shows a complex core with a double bar and inner disk, adding to the list of known Compton thick AGN in barred host galaxies.
We present the analysis of simultaneous NuSTAR and XMM-Newton data of 8 Compton-thick (CT-) active galactic nuclei (AGN) candidates selected in the Swift-Burst Alert Telescope (BAT) 100 month survey. This work is part of an ongoing effort to find and characterize all CT-AGN in the local ($zleq$0.05) Universe. We used two physically motivated models, MYTorus and borus02, to characterize the sources in the sample, finding 5 of them to be confirmed CT-AGN. These results represent an increase of $sim19$% over the previous NuSTAR-confirmed, BAT-selected CT-AGN at $zleq0.05$, bringing the total number to 32. This corresponds to an observed fraction of $sim 8$% of all AGN within this volume-limited sample, although it increases to $20pm5$% when limiting the sample to $zleq0.01$. Out of a sample of 48 CT-AGN candidates, selected using BAT and soft (0.3$-$10 keV) X-ray data, only 24 are confirmed as CT-AGN with the addition of the NuSTAR data. This highlights the importance of NuSTAR when classifying local obscured AGN. We also note that most of the sources in our full sample of 48 Seyfert 2 galaxies with NuSTAR data have significantly different line-of-sight and average torus column densities, favouring a patchy torus scenario.
Current measurements show that the observed fraction of Compton-thick (CT) AGN is smaller than the expected values needed to explain the cosmic X-ray background. Prior fits to the X-ray spectrum of the nearby Seyfert-2 galaxy NGC 5347 ($z=0.00792,, D =35.5 rm ~Mpc $) have alternately suggested a CT and Compton-thin source. Combining archival data from $Suzaku$, $Chandra$, and - most importantly - new data from $NuSTAR$, and using three distinct families of models, we show that NGC 5347 is an obscured CTAGN ($N_{rm H} > 2.23times 10^{24}~rm cm^{-2}$). Its 2-30~keV spectrum is dominated by reprocessed emission from distant material, characterized by a strong Fe K$alpha$ line and a Compton hump. We found a large equivalent width of the Fe K$alpha$ line ($rm EW = 2.3 pm 0.3$ keV) and a high intrinsic-to-observed flux ratio ($sim 100$). All of these observations are typical for bona fide CTAGN. We estimate a bolometric luminosity of $L_{rm bol} simeq 0.014 pm 0.005~L_{rm Edd.}$. The $Chandra$ image of NGC 5347 reveals the presence of extended emission dominating the soft X-ray spectrum ($E < 2,rm keV$), which coincides with the [O III] emission detected in the $Hubble ~Space~ Telescope$ images. Comparison to other CTAGN suggests that NGC 5347 is broadly consistent with the average properties of this source class. We simulated $XRISM$ and $Athena$/X-IFU spectra of the source, showing the potential of these future missions in identifying CTAGN in the soft X-rays.
We report a clumpy elongated feature found with deep Chandra ACIS high-resolution imaging of the Fe K{alpha} line emission in the nuclear region of the Compton Thick Active Galactic Nucleus (CT AGN) galaxy NGC 5643. This feature extends for ~65 pc N- S. No corresponding feature is seen in the 3.0-6.0 keV continuum. The Fe K{alpha} feature is spatially consistent with the N-S elongation found in the CO(2-1) high resolution imaging with ALMA (Alonso-Herrero et al 2018), but slightly more extended than the rotating molecular disk of r=26 pc indicated by the kinematics of the CO(2-1) line. The Chandra detection of a corresponding N-S structure in the neutral Fe K{alpha} line, would argue for both CO and Fe K{alpha} emission originating from the obscuring torus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا