ترغب بنشر مسار تعليمي؟ اضغط هنا

Flyby-induced misalignments in planet-hosting discs

92   0   0.0 ( 0 )
 نشر من قبل Rebecca Nealon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We now have several observational examples of misaligned broken protoplanetary discs, where the disc inner regions are strongly misaligned with respect to the outer disc. Current models suggest that this disc structure can be generated with an internal misaligned companion (stellar or planetary), but the occurrence rate of these currently unobserved companions remains unknown. Here we explore whether a strong misalignment between the inner and outer disc can be formed without such a companion. We consider a disc that has an existing gap --- essentially separating the disc into two regions --- and use a flyby to disturb the discs, leading to a misalignment. Despite considering the most optimistic parameters for this scenario, we find maximum misalignments between the inner and outer disc of $sim$45$^{circ}$ and that these misalignments are short-lived. We thus conclude that the currently observed misaligned discs must harbour internal, misaligned companions.



قيم البحث

اقرأ أيضاً

Quantifying the composition of the material in protoplanetary disks is paramount to determining the potential for exoplanetary systems to produce and support habitable environments. A key complex organic molecule (COM) to detect is methanol (CH3OH). CH3OH primarily forms at low temperatures via the hydrogenation of CO ice on the surface of icy dust grains and is a necessary basis for the formation of more complex species like amino acids and proteins. We report the detection of CH3OH in a disk around a young, luminous A-type star HD100546. This disk is warm and therefore does not host a significant CO ice reservoir. We argue that the CH3OH cannot form in situ, and hence, this disk has likely inherited COMs rich ice from an earlier cold dark cloud phase. This is strong evidence that at least some of the organic material survives the disk formation process and can then be incorporated into forming planets, moons and comets. Therefore, crucial pre-biotic chemical evolution already takes place in dark star-forming clouds.
82 - D. Stello 2017
To better understand how planets form, it is important to study planet occurrence rates as a function of stellar mass. However, estimating masses of field stars is often difficult. Over the past decade, a controversy has arisen about the inferred occ urrence rate of gas-giant planets around evolved intermediate-mass stars -- the so-called `retired A-stars. The high masses of these red-giant planet hosts, derived using spectroscopic information and stellar evolution models, have been called into question. Here we address the controversy by determining the masses of eight evolved planet-hosting stars using asteroseismology. We compare the masses with spectroscopic-based masses from the Exoplanet Orbit Database that were previously adopted to infer properties of the exoplanets and their hosts. We find a significant one-sided offset between the two sets of masses for stars with spectroscopic masses above roughly 1.6Msun, suggestive of an average 15--20% overestimate of the adopted spectroscopic-based masses. The only star in our sample well below this mass limit is also the only one not showing this offset. Finally, we note that the scatter across literature values of spectroscopic-based masses often exceed their formal uncertainties, making it comparable to the offset we report here.
As host to two accreting planets, PDS 70 provides a unique opportunity to probe the chemical complexity of atmosphere-forming material. We present ALMA Band 6 observations of the PDS~70 disk and report the first chemical inventory of the system. With a spatial resolution of 0.4-0.5 ($sim$50 au), 12 species are detected, including CO isotopologues and formaldehyde, small hydrocarbons, HCN and HCO+ isotopologues, and S-bearing molecules. SO and CH3OH are not detected. All lines show a large cavity at the center of the disk, indicative of the deep gap carved by the massive planets. The radial profiles of the line emission are compared to the (sub-)mm continuum and infrared scattered light intensity profiles. Different molecular transitions peak at different radii, revealing the complex interplay between density, temperature and chemistry in setting molecular abundances. Column densities and optical depth profiles are derived for all detected molecules, and upper limits obtained for the non detections. Excitation temperature is obtained for H2CO. Deuteration and nitrogen fractionation profiles from the hydro-cyanide lines show radially increasing fractionation levels. Comparison of the disk chemical inventory to grids of chemical models from the literature strongly suggests a disk molecular layer hosting a carbon to oxygen ratio C/O>1, thus providing for the first time compelling evidence of planets actively accreting high C/O ratio gas at present time.
We present a methodology to interpret observations of protoplanetary discs where a flyby, also called a tidal encounter, is suspected. In case of a flyby, protoplanetary discs can be significantly disturbed. The resulting dynamical and kinematical si gnatures can last for several thousands of years after the flyby and hence deeply affect the evolution of the disc. These effects are stronger for closer encounters and more massive perturbers. For the very same flyby parameters, varying the inclination of the perturbers orbit produces a broad range of disc structures: spirals, bridges, warps and cavities. We study this kind of features both in the gas and in the dust for grains ranging from 1 {mu}m to 10 cm in size. Interestingly, the dust exhibits a different dynamical behaviour compared to the gas because of gas-drag effects. Finally, flybys can also trigger high accretion events in the disc-hosting star, readily similar to FU Orionis-type outbursts. All this information can be used to infer the flyby parameters from an incomplete set of observations at different wavelengths. Therefore, the main scope of our flyby scene investigation (FSI) methodology is to help to interpret recent puzzling disc observations.
We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the {it Kepler} spacecraft. The inclination angle of each stars rotation axis was estimated from its rotation period, rotational line broadeni ng, and radius. The rotation periods were determined using the {it Kepler} photometric time series. The rotational line broadening was determined from high-resolution optical spectra with Subaru/HDS. Those same spectra were used to determine the stars photospheric parameters (effective temperature, surface gravity, metallicity) which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample with the 7 stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90$^circ$, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally these systems should be scrutinized with complementary techniques---such as the Rossiter-McLaughlin effect, starspot-crossing anomalies or asteroseismology---but the measurements will be difficult owing to the relatively faint apparent magnitudes and small transit signals in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا