ترغب بنشر مسار تعليمي؟ اضغط هنا

Liftable mapping class groups of regular cyclic covers

70   0   0.0 ( 0 )
 نشر من قبل Kashyap Rajeevsarathy
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $text{Mod}(S_g)$ be the mapping class group of the closed orientable surface of genus $g geq 1$. For $k geq 2$, we consider the standard $k$-sheeted regular cover $p_k: S_{k(g-1)+1} to S_g$, and analyze the liftable mapping class group $text{LMod}_{p_k}(S_g)$ associated with the cover $p_k$. In particular, we show that $text{LMod}_{p_k}(S_g)$ is the stabilizer subgroup of $text{Mod}(S_g)$ with respect to a collection of vectors in $H_1(S_g,mathbb{Z}_k)$, and also derive a symplectic criterion for the liftability of a given mapping class under $p_k$. As an application of this criterion, we obtain a normal series of $text{LMod}_{p_k}(S_g)$, which generalizes of a well known normal series of congruence subgroups in $text{SL}(2,mathbb{Z})$. Among other applications, we describe a procedure for obtaining a finite generating set for $text{LMod}_{p_k}(S_g)$ and examine the liftability of certain finite-order and pseudo-Anosov mapping classes.



قيم البحث

اقرأ أيضاً

142 - Nicholas G. Vlamis 2020
We prove that the mapping class group of a surface obtained from removing a Cantor set from either the 2-sphere, the plane, or the interior of the closed 2-disk has no proper countable-index subgroups. The proof is an application of the automatic con tinuity of these groups, which was established by Mann. As corollaries, we see that these groups do not contain any proper finite-index subgroups and that each of these groups have trivial abelianization.
We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for MCG(S), namely that groups quasi-isometric to MCG(S) are virtually equal to it. (The latter theorem was proved by Hamenstadt using different methods). As part of our approach we obtain several other structural results: a description of the tree-graded structure on the asymptotic cone of MCG(S); a characterization of the image of the curve-complex projection map from MCG(S) to the product of the curve complexes of essential subsurfaces of S; and a construction of Sigma-hulls in MCG(S), an analogue of convex hulls.
We study two actions of big mapping class groups. The first is an action by isometries on a Gromov-hyperbolic graph. The second is an action by homeomorphisms on a circle in which the vertices of the graph naturally embed. The first two parts of th e paper are devoted to the definition of objects and tools needed to introduce these two actions; in particular, we define and prove the existence of equators for infinite type surfaces, we define the hyperbolic graph and the circle needed for the actions, and we describe the Gromov-boundary of the graph using the embedding of its vertices in the circle. The third part focuses on some fruitful relations between the dynamics of the two actions. For example, we prove that loxodromic elements (for the first action) necessarily have rational rotation number (for the second action). In addition, we are able to construct non trivial quasimorphisms on many subgroups of big mapping class groups, even if they are not acylindrically hyperbolic.
In this paper we investigate the higher dimensional divergence functions of mapping class groups of surfaces and of CAT(0)--groups. We show that, for mapping class groups of surfaces, these functions exhibit phase transitions at the rank (as measured by thrice the genus plus the number of punctures minus 3). We also provide inductive constructions of CAT(0)--spaces with co-compact group actions, for which the divergence below the rank is (exactly) a polynomial function of our choice, with degree arbitrarily large compared to the dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا