The aim of this paper is to study Sasakian immersions of (non-compact) complete regular Sasakian manifolds into the Heisenberg group and into $ mathbb{B}^Ntimes mathbb{R}$ equipped with their standard Sasakian structures. We obtain a complete classification of such manifolds in the $eta$-Einstein case.
Einstein like $(varepsilon)$-para Sasakian manifolds are introduced. For an $(varepsilon) $-para Sasakian manifold to be Einstein like, a necessary and sufficient condition in terms of its curvature tensor is obtained. The scalar curvature of an Eins
tein like $(varepsilon) $-para Sasakian manifold is obtained and it is shown that the scalar curvature in this case must satisfy certain differential equation. A necessary and sufficient condition for an $(varepsilon) $-almost paracontact metric hypersurface of an indefinite locally Riemannian product manifold to be $(varepsilon) $-para Sasakian is obtained and it is proved that the $(varepsilon) $-para Sasakian hypersurface of an indefinite locally Riemannian product manifold of almost constant curvature is always Einstein like.
We study a natural contact instanton (CI) equation on gauge fields over 7-dimensional Sasakian manifolds, which is closely related both to the transverse Hermitian Yang-Mills (tHYM) condition and the G_2-instanton equation. We obtain, by Fredholm the
ory, a finite-dimensional local model for the moduli space of irreducible solutions. We derive cohomological conditions for smoothness, and we express its dimension in terms of the index of a transverse elliptic operator. Finally we show that the moduli space of selfdual contact instantons (ASDI) is Kahler, in the Sasakian case. As an instance of concrete interest, we specialise to transversely holomorphic Sasakian bundles over contact Calabi-Yau 7-manifolds, and we show that, in this context, the notions of contact instanton, integrable G_2-instanton and HYM connection coincide.
In this paper, we obtain some sufficient conditions for a 3-dimensional compact trans-Sasakian manifold of type $(alpha ,beta)$ to be homothetic to a Sasakian manifold. A characterization of a 3-dimensional cosymplectic manifold is also obtained.
Measure contraction property is a synthetic Ricci curvature lower bound for metric measure spaces. We consider Sasakian manifolds with non-negative Tanaka-Webster Ricci curvature equipped with the metric measure space structure defined by the sub-Rie
mannian metric and the Popp measure. We show that these spaces satisfy the measure contraction property $MCP(0,N)$ for some positive integer $N$. We also show that the same result holds when the Sasakian manifold is equipped with a family of Riemannian metrics extending the sub-Riemannian one.
We investigate the behavior of the second fundamental form of an isometric immersion of a space form with negative curvature into a space form so that the extrinsic curvature is negative. If the immersion has flat normal bundle, we prove that its second fundamental form grows exponentially.