ترغب بنشر مسار تعليمي؟ اضغط هنا

Fair treatment allocations in social networks

395   0   0.0 ( 0 )
 نشر من قبل James Atwood
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulations of infectious disease spread have long been used to understand how epidemics evolve and how to effectively treat them. However, comparatively little attention has been paid to understanding the fairness implications of different treatment strategies -- that is, how might such strategies distribute the expected disease burden differentially across various subgroups or communities in the population? In this work, we define the precision disease control problem -- the problem of optimally allocating vaccines in a social network in a step-by-step fashion -- and we use the ML Fairness Gym to simulate epidemic control and study it from both an efficiency and fairness perspective. We then present an exploratory analysis of several different environments and discuss the fairness implications of different treatment strategies.



قيم البحث

اقرأ أيضاً

We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the members of the weak communities also belong to stronger communities, they are extremely hard to be uncovered. We call the weak communities the hidden community structure. We present a novel approach called HICODE (HIdden COmmunity DEtection) that identifies the hidden community structure as well as the dominant community structure. By weakening the strength of the dominant structure, one can uncover the hidden structure beneath. Likewise, by reducing the strength of the hidden structure, one can more accurately identify the dominant structure. In this way, HICODE tackles both tasks simultaneously. Extensive experiments on real-world networks demonstrate that HICODE outperforms several state-of-the-art community detection methods in uncovering both the dominant and the hidden structure. In the Facebook university social networks, we find multiple non-redundant sets of communities that are strongly associated with residential hall, year of registration or career position of the faculties or students, while the state-of-the-art algorithms mainly locate the dominant ground truth category. In the Due to the difficulty of labeling all ground truth communities in real-world datasets, HICODE provides a promising approach to pinpoint the existing latent communities and uncover communities for which there is no ground truth. Finding this unknown structure is an extremely important community detection problem.
63 - Jin Xu , Shuo Yu , Ke Sun 2020
Multivariate relations are general in various types of networks, such as biological networks, social networks, transportation networks, and academic networks. Due to the principle of ternary closures and the trend of group formation, the multivariate relationships in social networks are complex and rich. Therefore, in graph learning tasks of social networks, the identification and utilization of multivariate relationship information are more important. Existing graph learning methods are based on the neighborhood information diffusion mechanism, which often leads to partial omission or even lack of multivariate relationship information, and ultimately affects the accuracy and execution efficiency of the task. To address these challenges, this paper proposes the multivariate relationship aggregation learning (MORE) method, which can effectively capture the multivariate relationship information in the network environment. By aggregating node attribute features and structural features, MORE achieves higher accuracy and faster convergence speed. We conducted experiments on one citation network and five social networks. The experimental results show that the MORE model has higher accuracy than the GCN (Graph Convolutional Network) model in node classification tasks, and can significantly reduce time cost.
Classification problems have made significant progress due to the maturity of artificial intelligence (AI). However, differentiating items from categories without noticeable boundaries is still a huge challenge for machines -- which is also crucial f or machines to be intelligent. In order to study the fuzzy concept on classification, we define and propose a globalness detection with the four-stage operational flow. We then demonstrate our framework on Facebook public pages inter-like graph with their geo-location. Our prediction algorithm achieves high precision (89%) and recall (88%) of local pages. We evaluate the results on both states and countries level, finding that the global node ratios are relatively high in those states (NY, CA) having large and international cities. Several global nodes examples have also been shown and studied in this paper. It is our hope that our results unveil the perfect value from every classification problem and provide a better understanding of global and local nodes in Online Social Networks (OSNs).
Interest surrounding cryptocurrencies, digital or virtual currencies that are used as a medium for financial transactions, has grown tremendously in recent years. The anonymity surrounding these currencies makes investors particularly susceptible to fraud---such as pump and dump scams---where the goal is to artificially inflate the perceived worth of a currency, luring victims into investing before the fraudsters can sell their holdings. Because of the speed and relative anonymity offered by social platforms such as Twitter and Telegram, social media has become a preferred platform for scammers who wish to spread false hype about the cryptocurrency they are trying to pump. In this work we propose and evaluate a computational approach that can automatically identify pump and dump scams as they unfold by combining information across social media platforms. We also develop a multi-modal approach for predicting whether a particular pump attempt will succeed or not. Finally, we analyze the prevalence of bots in cryptocurrency related tweets, and observe a significant increase in bot activity during the pump attempts.
74 - Fei Yu , Feiyi Fan , Shouxu Jiang 2019
Social activities play an important role in peoples daily life since they interact. For recommendations based on social activities, it is vital to have not only the activity information but also individuals social relations. Thanks to the geo-social networks and widespread use of location-aware mobile devices, massive geo-social data is now readily available for exploitation by the recommendation system. In this paper, a novel group recommendation method, called attentive geo-social group recommendation, is proposed to recommend the target user with both activity locations and a group of users that may join the activities. We present an attention mechanism to model the influence of the target user $u_T$ in candidate user groups that satisfy the social constraints. It helps to retrieve the optimal user group and activity topic candidates, as well as explains the group decision-making process. Once the user group and topics are retrieved, a novel efficient spatial query algorithm SPA-DF is employed to determine the activity location under the constraints of the given user group and activity topic candidates. The proposed method is evaluated in real-world datasets and the experimental results show that the proposed model significantly outperforms baseline methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا