ﻻ يوجد ملخص باللغة العربية
During the last 20 years, the advance of communication technologies has generated multiple exciting applications. However, classical cryptography, commonly adopted to secure current communication systems, can be jeopardized by the advent of quantum computers. Quantum key distribution (QKD) is a promising technology aiming to solve such a security problem. Unfortunately, current implementations of QKD systems show relatively low key rates, demand low channel noise and use ad hoc devices. In this work, we picture how to overcome the rate limitation by using a 37-core fibre to generate 2.86 Mbit/s per core that can be space multiplexed into the highest secret key rate of 105.7 Mbit/s to date. We also demonstrate, with off-the-shelf equipment, the robustness of the system by co-propagating a classical signal at 370 Gbit/s, paving the way for a shared quantum and classical communication network.
We report the results of the implementation of a quantum key distribution (QKD) network using standard fibre communication lines in Moscow. The developed QKD network is based on the paradigm of trusted repeaters and allows a common secret key to be g
We prove a regularized formula for the secret key-assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity cite{DHW
Quantum communications promise to revolutionise the way information is exchanged and protected. Unlike their classical counterpart, they are based on dim optical pulses that cannot be amplified by conventional optical repeaters. Consequently they are
The possibility for quantum and classical communication to coexist on the same fibre is important for deployment and widespread adoption of quantum key distribution (QKD) and, more generally, a future quantum internet. While coexistence has been demo
Distribution and distillation of entanglement over quantum networks is a basic task for Quantum Internet applications. A fundamental question is then to determine the ultimate performance of entanglement distribution over a given network. Although th