ﻻ يوجد ملخص باللغة العربية
It is known that limits on baryon-violating nucleon decays do not, in general, imply corresponding suppression of $n - bar n$ transitions. In the context of a model with fermions propagating in higher dimensions, we investigate a related question, namely the implications of limits on $Delta L=-1$ proton and bound neutron decays mediated by four-fermion operators for rates of nucleon decays mediated by $k$-fermion operators with $k =6$ and $k=8$. These include a variety of nucleon and dinucleon decays to dilepton and trilepton final states with $Delta L=-3, -2, 1$, and $2$. We carry out a low-energy effective field theory analysis of relevant operators for these decays and show that, in this extra-dimensional model, the rates for these decays are strongly suppressed and hence are in accord with experimental limits.
We consider baryon-number-violating nucleon and dinucleon decays to leptonic final states in the context of a left-right symmetric (LRS) model with large extra dimensions. Specifically, we study (a) nucleon to trilepton decays with $Delta B=-1$ and $
We study baryon number violating nucleon decays induced by unparticle interactions with the standard model particles. We find that the lowest dimension operators which cause nucleon decays can arise at dimension 6 + (d_s-3/2) with the unparticles bei
We consider effects of $n-bar n$ oscillations and resultant matter instability due to dinucleons decays. We point out that existing upper bounds on the rates for the dinucleon decays $nn to 2pi^0$, $nn to pi^+pi^-$, and $np to pi^+pi^0$ imply upper b
We study baryon-number-violating processes, including proton and bound neutron decays and $n-bar n$ oscillations, in a left-right-symmetric (LRS) model in which quarks and leptons have localized wavefunctions in extra dimensions. In this model we sho
Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks i