ﻻ يوجد ملخص باللغة العربية
MASCARA-4 b is a hot Jupiter in a highly-misaligned orbit around a rapidly-rotating A3V star that was observed for 54 days by the Transiting Exoplanet Survey Satellite (tess). We perform two analyses of MASCARA-4 b using a stellar gravity-darkened model. First, we measure MASCARA-4 bs misaligned orbital configuration by modeling its tess~photometric light curve. We take advantage of the asymmetry in MASCARA-4 bs transit due to its host stars gravity-darkened surface to measure MASCARA-4 bs true spin-orbit angle to be $104^{circ+7^circ}_{-13^circ}$. We also detect a $sim4sigma$ secondary eclipse at $0.491pm0.007$ orbital phase, proving that the orbit is slightly eccentric. Second, we model MASCARA-4 bs insolation including gravity-darkening and find that the planets received XUV flux varies by $4$% throughout its orbit. MASCARA-4 bs short-period, polar orbit suggests that the planet likely underwent dramatic orbital evolution to end up in its present-day configuration and that it receives a varying stellar irradiance that perpetually forces the planet out of thermal equilibrium. These findings make MASCARA-4 b an excellent target for follow-up characterization to better understand orbital evolution and current-day of planets around high-mass stars.
We report the discovery of MASCARA-1 b, the first exoplanet discovered with the Multi-site All-Sky CAmeRA (MASCARA). It is a hot Jupiter orbiting a bright $m_V=8.3$, rapidly rotating ($vsin i_star > 100~rm{km~s}^{-1}$) A8 star with a period of $2.148
In this paper, we aim to characterize a transiting planetary candidate in the southern skies found in the combined MASCARA and bRing data sets of HD 85628, an A3V star of V = 8.2 mag at a distance 172 pc, to confirm its planetary nature. The candidat
In this paper we present MASCARA-2 b, a hot Jupiter transiting the $m_V=7.6$ A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million flux measurements of the star, corresponding to a total of almost 3000 hours of observations, re
Ultra-hot Jupiters offer interesting prospects for expanding our theories on dynamical evolution and the properties of extremely irradiated atmospheres. In this context, we present the analysis of new optical spectroscopy for the transiting ultra-hot
Ultra-hot Jupiters are defined as giant planets with equilibrium temperatures larger than 2000 K. Most of them are found orbiting bright A-F type stars, making them extremely suitable objects to study their atmospheres using high-resolution spectrosc