ﻻ يوجد ملخص باللغة العربية
We explore the possibility that matter bulk flows could generate the required vorticity in the electron-proton-photon plasma to source cosmic magnetic fields through the Harrison mechanism. We analyze the coupled set of perturbed Maxwell and Boltzmann equations for a plasma in which the matter and radiation components exhibit relative bulk motions at the background level. We find that, to first order in cosmological perturbations, bulk flows with velocities compatible with current Planck limits ($beta<8.5times 10^{-4}$ at $95%$ CL) could generate magnetic fields with an amplitude $10^{-21}$ G on 10 kpc comoving scales at the time of completed galaxy formation which could be sufficient to seed a galactic dynamo mechanism.
We propose and apply a new test of Einsteins Equivalence Principle (EEP) based on the gravitational redshift induced by the central super massive black hole of quasars in the surrounding accretion disk. Specifically, we compare the observed gravitati
We present validation tests of emulator-based halo model method for cosmological parameter inference, assuming hypothetical measurements of the projected correlation function of galaxies, $w_{rm p}(R)$, and the galaxy-galaxy weak lensing, $Delta!Sigm
A variety of observations impose upper limits at the nano Gauss level on magnetic fields that are coherent on inter-galactic scales while blazar observations indicate a lower bound $sim 10^{-16}$ Gauss. Such magnetic fields can play an important astr
Persistent evidence for a cosmic hemispherical asymmetry in the temperature field of cosmic microwave background (CMB) as observed by both WMAP as well as PLANCK increases the possibility of its cosmological origin. Presence of this signal may lead t
LCDM cosmological models with Early Dark Energy (EDE) have been proposed to resolve tensions between the Hubble constant H0 = 100h km/s/Mpc measured locally, giving h ~ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other earl