ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is threefold: First of all the topological aspects of the Landau Hamiltonian are reviewed in the light (and with the jargon) of theory of topological insulators. In particular it is shown that the Landau Hamiltonian has a generalized even time-reversal symmetry (TRS). Secondly, a new tool for the computation of the topological numbers associated with each Landau level is introduced. The latter is obtained by combining the Dixmier trace and the (resolvent of the) harmonic oscillator. Finally, these results are extended to models with non-Abelian magnetic fields. Two models are investigated in details: the Jaynes-Cummings model and the Quaternionic model.
We develop the differential aspects of a noncommutative geometry for the Quantum Hall Effect in the continuous, with the ambition of proving Kubos formula. Taking inspiration from the ideas developed by Bellissard during the 80s we build a Fredholm m
It is an important open problem to understand the landscape of non-Abelian fractional quantum Hall phases which can be obtained starting from physically motivated theories of Abelian composite particles. We show that progress on this problem can be m
We use coarse index methods to prove that the Landau Hamiltonian on the hyperbolic half-plane, and even on much more general imperfect half-spaces, has no spectral gaps. Thus the edge states of hyperbolic quantum Hall Hamiltonians completely fill up
The Landau levels of cold atomic gases in non-Abelian gauge fields are analyzed. In particular we identify effects on the energy spectrum and density distribution which are purely due to the non-Abelian character of the fields. We investigate in deta
An almost non-abelian extension of the Rieffel deformation is presented in this work. The non-abelicity comes into play by the introduction of unitary groups which are dependent of the infinitesimal generators of $SU(n)$. This extension is applied to quantum mechanics and quantum field theory.