ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistics of temperature and thermal energy dissipation rate in low-Prandtl number turbulent thermal convection

59   0   0.0 ( 0 )
 نشر من قبل Ao Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the statistical properties of temperature and thermal energy dissipation rate in low-Prandtl number turbulent Rayleigh-Benard convection. High resolution two-dimensional direct numerical simulations were carried out for the Rayleigh number ($Ra$) of $10^{6} le Ra le 10^{7}$ and the Prandtl number ($Pr$) of 0.025. Our results show that the global heat transport and momentum scaling in terms of Nusselt number ($Nu$) and Reynolds number ($Re$) are $Nu=0.21Ra^{0.25}$ and $Re=6.11Ra^{0.50}$, respectively, indicating that the scaling exponents are smaller than those for moderate-Prandtl number fluids (such as water or air) in the same convection cell. In the central region of the cell, probability density functions (PDFs) of temperature profiles show stretched exponential peak and the Gaussian tail; in the sidewall region, PDFs of temperature profiles show a multimodal distribution at relative lower $Ra$, while they approach the Gaussian profile at relative higher $Ra$. We split the energy dissipation rate into contributions from bulk and boundary layers and found the locally averaged thermal energy dissipation rate from the boundary layer region is an order of magnitude larger than that from the bulk region. Even if the much smaller volume occupied by the boundary layer region is considered, the globally averaged thermal energy dissipation rate from the boundary layer region is still larger than that from the bulk region. We further numerically determined the scaling exponents of globally averaged thermal energy dissipation rates as functions of $Ra$ and $Re$.



قيم البحث

اقرأ أيضاً

65 - Ao Xu , Shi Tao , Le Shi 2020
We analyze the transport and deposition behavior of dilute microparticles in turbulent Rayleigh-Benard convection. Two-dimensional direct numerical simulations were carried out for the Rayleigh number ($Ra$) of $10^{8}$ and the Prandtl number ($Pr$) of 0.71 (corresponding to the working fluids of air). The Lagrangian point particle model was used to describe the motion of microparticles in the turbulence. Our results show that the suspended particles are homogeneously distributed in the turbulence for the Stokes number ($St$) less than $10^{-3}$, and they tend to cluster into bands for $10^{-3} lesssim St lesssim 10^{-2}$. At even larger $St$, the microparticles will quickly sediment in the convection. We also calculate the mean-square displacement (MSD) of the particles trajectories. At short time intervals, the MSD exhibits a ballistic regime, and it is isotropic in vertical and lateral directions; at longer time intervals, the MSD reflects a confined motion for the particles, and it is anisotropic in different directions. We further obtained a phase diagram of the particle deposition positions on the wall, and we identified three deposition states depending on the particles density and diameter. An interesting finding is that the dispersed particles preferred to deposit on the vertical wall where the hot plumes arise, which is verified by tilting the cell and altering the rotation direction of the large-scale circulation.
Results from direct numerical simulation for three-dimensional Rayleigh-Benard convection in samples of aspect ratio $Gamma=0.23$ and $Gamma=0.5$ up to Rayleigh number $Ra=2times10^{12}$ are presented. The broad range of Prandtl numbers $0.5<Pr<10$ i s considered. In contrast to some experiments, we do not see any increase in $Nu/Ra^{1/3}$, neither due to $Pr$ number effects, nor due to a constant heat flux boundary condition at the bottom plate instead of constant temperature boundary conditions. Even at these very high $Ra$, both the thermal and kinetic boundary layer thicknesses obey Prandtl-Blasius scaling.
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly an d continuously, from the top and bottom plates. We further found that the oscillation of the temperature field does not originate from the boundary layers, but rather is a result of the horizontal motion of the hot ascending and cold descending fluids being modulated by the twisting and sloshing motion of the bulk flow field.
Many environmental flows arise due to natural convection at a vertical surface, from flows in buildings to dissolving ice faces at marine-terminating glaciers. We use three-dimensional direct numerical simulations of a vertical channel with different ially heated walls to investigate such convective, turbulent boundary layers. Through the implementation of a multiple-resolution technique, we are able to perform simulations at a wide range of Prandtl numbers $Pr$. This allows us to distinguish the parameter dependences of the horizontal heat flux and the boundary layer widths in terms of the Rayleigh number $Ra$ and Prandtl number $Pr$. For the considered parameter range $1leq Pr leq 100$, $10^6 leq Ra leq 10^9$, we find the flow to be consistent with a buoyancy-controlled regime where the heat flux is independent of the wall separation. For given $Pr$, the heat flux is found to scale linearly with the friction velocity $V_ast$. Finally, we discuss the implications of our results for the parameterisation of heat and salt fluxes at vertical ice-ocean interfaces.
102 - P. Urban , T. Kralik , M. Macek 2021
We report an experimental study aiming to clarify the role of boundary conditions (BC) in high Rayleigh number $10^8 < {rm{Ra}} < 3 times 10^{12}$ turbulent thermal convection of cryogenic helium gas. We switch between BC closer to constant heat flux (CF) and constant temperature (CT) applied to the highly conducting bottom plate of the aspect ratio one cylindrical cell 30 cm in size, leading to dramatic changes in the temperature probability density function and in power spectral density of the temperature fluctuations measured at the bottom plate, while the dynamic thermal behaviour of the top plate and bulk convective flow remain unaffected. Within our experimental accuracy, we find no appreciable changes in Reynolds number Re(Ra) scaling, in the dimensionless heat transfer efficiency expressed via Nusselt number Nu(Ra) scaling, nor in the rate of direction reversals of large scale circulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا