ﻻ يوجد ملخص باللغة العربية
We show {it semidefinite programming} (SDP) feasibility problem is equivalent to solving a {it convex hull relaxation} (CHR) for a finite system of quadratic equations. On the one hand, this offers a simple description of SDP. On the other hand, this equivalence makes it possible to describe a version of the {it Triangle Algorithm} for SDP feasibility based on solving CHR. Specifically, the Triangle Algorithm either computes an approximation to the least-norm feasible solution of SDP, or using its {it distance duality}, provides a separation when no solution within a prescribed norm exists. The worst-case complexity of each iteration is computing the largest eigenvalue of a symmetric matrix arising in that iteration. Alternate complexity bounds on the total number of iterations can be derived. The Triangle Algorithm thus provides an alternative to the existing interior-point algorithms for SDP feasibility and SDP optimization. In particular, based on a preliminary computational result, we can efficiently solve SDP relaxation of {it binary quadratic} feasibility via the Triangle Algorithm. This finds application in solving SDP relaxation of MAX-CUT. We also show in the case of testing the feasibility of a system of convex quadratic inequalities, the problem is reducible to a corresponding CHR, where the worst-case complexity of each iteration via the Triangle Algorithm is solving a {it trust region subproblem}. Gaining from these results, we discuss potential extension of CHR and the Triangle Algorithm to solving general system of polynomial equations.
Given a subset $mathbf{S}={A_1, dots, A_m}$ of $mathbb{S}^n$, the set of $n times n$ real symmetric matrices, we define its {it spectrahull} as the set $SH(mathbf{S}) = {p(X) equiv (Tr(A_1 X), dots, Tr(A_m X))^T : X in mathbf{Delta}_n}$, where ${bf D
We revisit the so-called sampling and discarding approach used to quantify the probability of violation of a scenario solution when some of the original samples are allowed to be discarded. We propose a scheme that consists of a cascade of optimizati
Mean field games with a major player were introduced in (Huang, 2010) within a linear-quadratic (LQ) modeling framework. Due to the rich structure of major-minor player models, the past ten years have seen significant research efforts for different s
Distributed operation of integrated electricity and gas systems (IEGS) receives much attention since it respects data security and privacy between different agencies. This paper proposes an extended convex hull (ECH) based method to address the distr
Optimized Pulse Patterns (OPPs) are gaining increasing popularity in the power electronics community over the well-studied pulse width modulation due to their inherent ability to provide the switching instances that optimize current harmonic distorti