ﻻ يوجد ملخص باللغة العربية
We present the kinematical properties of the UV and optical FeII emission gas based on the velocity shift and line width measurements of a sample of 223 Type 1 active galactic nuclei (AGNs) at 0.4 $<$ z $<$ 0.8. We find a strong correlation between the line widths of the UV and optical FeII emission lines, indicating that both FeII emission features arise from similar distances in the broad line region (BLR). However, in detail we find differing trends, depending on the width of FeII. While the velocity shifts and dispersions of the UV Fe II (FeUV) and optical Fe II (FeOPT) emission lines are comparable to each other for AGNs with relatively narrow FeOPT line widths (i.e., FWHM < 3200 kms; Group A), FeOPT is broader than FeUV for AGNs with relatively broad FeOPT (i.e., FWHM > 3200 kms; Group B). FeII emission lines are on average narrower than Hb and MgII for Group A, indicating the FeII emission region is further out in the BLR, while for Group B AGNs FeOPT is comparable to Hb and broader than MgII. While FeII emission lines are on average redshifted ($40pm141$ kms and $182pm95$, respectively for FeUV and FeOPT), indicating inflow, the sample as a whole shows a large range of velocity shifts, suggesting complex nature of gas kinematics.
From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate---statistically for the first time---that narrow optical Fe II emission lines, both permitted a
Limited studies have been performed on the radio-loud fraction in X-ray selected type 1 AGN samples. The consistency between various radio-loudness definitions also needs to be checked. We measure the radio-loudness of the 407 type 1 AGNs in the XMM-
Our ability to study the properties of the interstellar medium (ISM) in the earliest galaxies will rely on emission line diagnostics at rest-frame ultraviolet (UV) wavelengths. In this work, we identify metallicity-sensitive diagnostics using UV emis
We present a systematic study of ionized gas outflows based on the velocity shift and dispersion of the [O III] {lambda}5007 $AA$ emission line, using a sample of ~ 5000 Type 1 AGNs at z < 0.3 selected from Sloan Digital Sky Survey. This analysis is
We present the spatially resolved gas and stellar kinematics of a sample of ten hidden type 1 AGNs in order to investigate the true nature of the central source and the scaling relation with host galaxy stellar velocity dispersion. The sample is sele