ﻻ يوجد ملخص باللغة العربية
New developments in liquid scintillators, high-efficiency, fast photon detectors, and chromatic photon sorting have opened up the possibility for building a large-scale detector that can discriminate between Cherenkov and scintillation signals. Such a detector could exploit these two distinct signals to observe particle direction and species using Cherenkov light while also having the excellent energy resolution and low threshold of a scintillator detector. Situated in a deep underground laboratory, and utilizing new techniques in computing and reconstruction techniques, such a detector could achieve unprecedented levels of background rejection, thus enabling a rich physics program that would span topics in nuclear, high-energy, and astrophysics, and across a dynamic range from hundreds of keV to many GeV. The scientific program would include observations of low- and high-energy solar neutrinos, determination of neutrino mass ordering and measurement of the neutrino CP violating phase, observations of diffuse supernova neutrinos and neutrinos from a supernova burst, sensitive searches for nucleon decay and, ultimately, a search for NeutrinoLess Double Beta Decay (NLDBD) with sensitivity reaching the normal ordering regime of neutrino mass phase space. This paper describes Theia, a detector design that incorporates these new technologies in a practical and affordable way to accomplish the science goals described above. We consider two scenarios, one in which Theia would reside in a cavern the size and shape of the caverns intended to be excavated for the Deep Underground Neutrino Experiment (DUNE) which we call Theia 25, and a larger 100 ktonne version (Theia 100) that could achieve an even broader and more sensitive scientific program.
The discovery of the neutrino by Reines & Cowan in 1956 revolutionised our understanding of the universe at its most fundamental level and provided a new probe with which to explore the cosmos. Furthermore, it laid the groundwork for one of the most
A large-scale neutrino observatory based on Water-based Liquid Scintillator (WbLS) will be excellently suited for a measurement of the Diffuse Supernova Neutrino Background (DSNB). The WbLS technique offers high signal efficiency and effective suppre
We propose to detect and to study neutrino neutral current coherent scattering off atomic nuclei with a two-phase emission detector using liquid xenon as a working medium. Expected signals and backgrounds are calculated for two possible experimental
Determination of the neutrino mass hierarchy using a reactor neutrino experiment at $sim$60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, as well as the degeneracies ca
SNO+ is a large-scale liquid scintillator experiment with the primary goal of searching for neutrinoless double beta decay, and is located approximately 2 km underground in SNOLAB, Sudbury, Canada. The detector acquired data for two years as a pure w