ﻻ يوجد ملخص باللغة العربية
Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type $A$, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the $R$-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type $C$ were given therein, while the present paper deals with types $B$ and $D$. The arguments for all classical types are quite similar so we mostly concentrate on necessary additional details specific to the underlying orthogonal Lie algebras.
An explicit isomorphism between the $R$-matrix and Drinfeld presentations of the quantum affine algebra in type $A$ was given by Ding and I. Frenkel (1993). We show that this result can be extended to types $B$, $C$ and $D$ and give a detailed constr
Drinfeld realisations are constructed for the quantum affine superalgebras of the series ${rmmathfrak{osp}}(1|2n)^{(1)}$,${rmmathfrak{sl}}(1|2n)^{(2)}$ and ${rmmathfrak{osp}}(2|2n)^{(2)}$. By using the realisations, we develop vertex operator represe
For $mathfrak g$ a Kac-Moody algebra of affine type, we show that there is an $text{Aut}, mathcal O$-equivariant identification between $text{Fun},text{Op}_{mathfrak g}(D)$, the algebra of functions on the space of ${mathfrak g}$-opers on the disc, a
In this thesis we give obstructions for Drinfeld twist deformation quantization on several classes of symplectic manifolds. Motivated from this quantization procedure, we further construct a noncommutative Cartan calculus on any braided commutative a
We determine explicit quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centers and block diagonal forms {of these algebras.} In the case where $q$ is {an arbitrary} root of unity, this further determines the degrees.