ﻻ يوجد ملخص باللغة العربية
In this work, we explore soft leptogenesis in the NMSSM framework extended by a right-handed neutrino superfield. We calculate the CP asymmetry, $varepsilon$, and find it to be non-zero at tree-level without using thermal effects for the final state particles. This is in contrast to soft leptogenesis in the MSSM extended by a right-handed neutrino superfield where thermal effects are essential. The difference arises due to the presence of a 3-body decay of the sneutrino in the NMSSM that violates lepton number at tree-level. Apart from this, we also find that $varepsilon eq 0$ if the additional singlet scalar has a complex vacuum expectation value while all the other NMSSM parameters including the soft SUSY breaking ones relevant for CP asymmetry remain real. We estimate the order of magnitudes of these parameters to produce sufficient baryon asymmetry of the Universe.
We study the possibility of measuring neutrino Yukawa couplings in the Next-to-Minimal Supersymmetric Standard Model with right-handed neutrinos (NMSSMr) when the lightest right-handed sneutrino is the Dark Matter (DM) candidate, by exploiting a `dij
Very light right-handed (RH) sneutrinos in the Next-to-Minimal Supersymmetric Standard Model can be viable candidates for cold dark matter. We investigate the prospects for their direct detection, addressing their compatibility with the recent signal
We propose that the observed matter-antimatter asymmetry can be naturally produced as a byproduct of axion-driven slow-roll inflation by coupling the axion to standard-model neutrinos. We assume that GUT scale right-handed neutrinos are responsible f
We consider an extension of the standard electroweak model with three Higgs doublets and global $B-L$ and $mathbb{Z}_2$ symmetries. Two of the scalar doublets are inert due to the $mathbb{Z}_2$ symmetry. We calculated all the mass spectra in the scal
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ~ 2/3) in relativistic (M ~ pi T) and non-relativistic regimes (M >