ﻻ يوجد ملخص باللغة العربية
The magnetic glassy state is a fascinating phenomenon, which results from the kinetic arrest of the first order magnetic phase transition. Interesting properties, such as metastable magnetization and nonequilibrium magnetic phases, are naturally developed in the magnetic glassy state. Here, we report magnetic glass property in the low spin state of Co3+ in EuBaCo2O5+{delta} ({delta} = 0.47) cobaltite at low temperature (T < 60 K). The measurements of magnetization under the cooling and heating in unequal fields, magnetization relaxation and thermal cycling of magnetization show the kinetic arrest of low magnetization state below 60 K. The kinetically arrested low temperature magnetic phase is further supported through the study of isothermal magnetic entropy, which shows the significant entropy change. The present results will open a new window to search the microscopic relation between the spin state transitions and the kinetic arrest induced magnetic glassy phenomena in complex materials.
The structural, magnetic and transport properties of the layered RBaCo$_2$O$_{5.5}$ cobaltites are sensitive to the oxygen stoichiometry. In this present study, we report the presence of a low-temperature magnetic glassy state in electron-doped polyc
Using an optimized bridge geometry we have been able to make accurate measurements of the properties of YBa2Cu3O7-delta grain boundaries above Tc. The results show a strong dependence of the change of resistance with temperature on grain boundary ang
Secondary batteries are important energy storage devices for a mobile equipment, an electric car, and a large-scale energy storage. Nevertheless, variation of the local electronic state of the battery materials in the charge (or oxidization) process
Ab-initio relativistic dynamical mean-field theory is applied to resolve the long-standing controversy between theory and experiment in the simple face-centered cubic phase of plutonium called delta-Pu. In agreement with experiment, neither static no
Correlation effects are important for making predictions in the delta phase of Pu. Using a realistic treatment of the intra-atomic Coulomb correlations we address the long-standing problem of computing ground state properties. The equilibrium volume