ﻻ يوجد ملخص باللغة العربية
Machine learning software applications are nowadays ubiquitous in many fields of science and society for their outstanding capability of solving computationally vast problems like the recognition of patterns and regularities in big datasets. One of the main goals of research is the realization of a physical neural network able to perform data processing in a much faster and energy-efficient way than the state-of-the-art technology. Here we show that lattices of exciton-polariton condensates accomplish neuromorphic computing using fast optical nonlinearities and with lower error rate than any previous hardware implementation. We demonstrate that our neural network significantly increases the recognition efficiency compared to the linear classification algorithms on one of the most widely used benchmarks, the MNIST problem, showing a concrete advantage from the integration of optical systems in reservoir computing architectures.
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In this architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer
Brain-inspired neuromorphic computing which consist neurons and synapses, with an ability to perform complex information processing has unfolded a new paradigm of computing to overcome the von Neumann bottleneck. Electronic synaptic memristor devices
Quantum neuromorphic computing physically implements neural networks in brain-inspired quantum hardware to speed up their computation. In this perspective article, we show that this emerging paradigm could make the best use of the existing and near f
Neuromorphic computing takes inspiration from the brain to create energy efficient hardware for information processing, capable of highly sophisticated tasks. In this article, we make the case that building this new hardware necessitates reinventing
This paper presents the concepts behind the BrainScales (BSS) accelerated analog neuromorphic computing architecture. It describes the second-generation BrainScales-2 (BSS-2) version and its most recent in-silico realization, the HICANN-X Application