ﻻ يوجد ملخص باللغة العربية
Breaking the diffraction limit is always an appealing topic due to the urge for a better imaging resolution in almost all areas. As an effective solution, the superlens based on the plasmonic effect can resonantly amplify evanescent waves, and achieve subwavelength resolution. However, the natural plasmonic materials, within their limited choices, usually have inherit high losses and are only available from the infrared to visible wavelengths. In this work, we have theoretically and experimentally demonstrated that the arbitrary materials, even air, can be used to enhance evanescent waves and build low loss superlens with at the desired frequency. The operating mechanisms reside in the dispersion-induced effective plasmons in a bounded waveguide structure. Based on this, we constructed the hyperbolic metamaterials and experimentally verified its validity in the microwave range by the directional propagation and imaging with a resolution of 0.087 wavelength. We have also demonstrated that the imaging potential can be extended to terahertz and infrared bands. The proposed method can break the conventional barriers of plasmon-based lenses and bring new possibilities to the field of superresolution imaging from microwave to infrared wavelengths.
There has been significant interest in imaging and focusing schemes that use evanescent waves to beat the diffraction limit, such as those employing negative refractive index materials or hyperbolic metamaterials. The fundamental issue with all such
Abbes resolution limit, one of the best-known physical limitations, poses a great challenge for any wave systems in imaging, wave transport, and dynamics. Originally formulated in linear optics, this Abbes limit can be broken using nonlinear optical
The scattering of electromagnetic wave by a periodic array of nanowires is calculated by the boundary element method. The method is extended to the infinite grating near the interface between two dielectrics. A special Green function is derived that
Based on transformation optics, a strategy is proposed to expose the inner one-dimensional space of a wave field inside a beam volume to the surface of the propagation medium and extend the space from one-dimensional to two-dimensional, allowing the
The coordinate transformation technique is applied to the design of perfect lenses and superlenses. In particular, anisotropic metamaterials that magnify two-dimensional planar images beyond the diffraction limit are designed by the use of oblate sph