ﻻ يوجد ملخص باللغة العربية
Weyl semimetal is a topologically non-trivial phase of matter with pairs of Weyl nodes in the k-space, which act as monopole and anti-monopole pairs of Berry curvature. Two hallmarks of the Weyl metallic state are the topological surface state called the Fermi arc and the chiral anomaly. It is known that the chiral anomaly yields anomalous magneto-transport phenomena. In this study, we report the emergence of the type-II Weyl semimetallic state in the geometrically frustrated non-collinear antiferromagnetic Shastry-Sutherland lattice (SSL) GdB4 crystal. When we apply magnetic fields perpendicular to the noncollinear moments in SSL plane, Weyl nodes are created above and below the Fermi energy along the M-A line (tau-band) because the spin tilting breaks the time-reversal symmetry and lifts band degeneracy while preserving C4z or C2z symmetry. The unique electronic structure of GdB4 under magnetic fields applied perpendicular to the SSL gives rise to a non-trivial Berry phase, detected in de Haas-van Alphen experiments and chiral-anomaly-induced negative magnetoresistance. The emergence of the magnetic field-induced Weyl state in SSL presents a new guiding principle to develop novel types of Weyl semimetals in frustrated spin systems.
The phase diagrams of the frustrated classical spin model with Dzyaloshinskii-Moriya (DM) interaction on the Shastry-Sutherland (S-S) lattice are studied by means of Monte Carlo simulation. For ferromagnetic next-nearest-neighboring (J2) interactions
Synergic effect of electronic correlation and spin-orbit coupling is an emerging topic in topological materials. Central to this rapidly developing area are the prototypes of strongly correlated heavy-fermion systems. Recently, some Ce-based compound
In the presence of a magnetic field frustrated spin systems may exhibit plateaus at fractional values of saturation magnetization. Such plateau states are stabilized by classical and quantum mechanisms including order-by-disorder, triplon crystalliza
Birnessite compounds are stable across a wide range of compositions that produces a remarkable diversity in their physical, electrochemical and functional properties. These are hydrated analogues of the magnetically frustrated, mixed-valent manganese
We show that temperature and magnetic field properties of the entanglement between spins on the two-dimensional Shastry-Sutherland lattice can be qualitatively described by analytical results for a qubit tetramer. Exact diagonalization of clusters wi