ترغب بنشر مسار تعليمي؟ اضغط هنا

PointDAN: A Multi-Scale 3D Domain Adaption Network for Point Cloud Representation

168   0   0.0 ( 0 )
 نشر من قبل Haoxuan You
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain Adaptation (DA) approaches achieved significant improvements in a wide range of machine learning and computer vision tasks (i.e., classification, detection, and segmentation). However, as far as we are aware, there are few methods yet to achieve domain adaptation directly on 3D point cloud data. The unique challenge of point cloud data lies in its abundant spatial geometric information, and the semantics of the whole object is contributed by including regional geometric structures. Specifically, most general-purpose DA methods that struggle for global feature alignment and ignore local geometric information are not suitable for 3D domain alignment. In this paper, we propose a novel 3D Domain Adaptation Network for point cloud data (PointDAN). PointDAN jointly aligns the global and local features in multi-level. For local alignment, we propose Self-Adaptive (SA) node module with an adjusted receptive field to model the discriminative local structures for aligning domains. To represent hierarchically scaled features, node-attention module is further introduced to weight the relationship of SA nodes across objects and domains. For global alignment, an adversarial-training strategy is employed to learn and align global features across domains. Since there is no common evaluation benchmark for 3D point cloud DA scenario, we build a general benchmark (i.e., PointDA-10) extracted from three popular 3D object/scene datasets (i.e., ModelNet, ShapeNet and ScanNet) for cross-domain 3D objects classification fashion. Extensive experiments on PointDA-10 illustrate the superiority of our model over the state-of-the-art general-purpose DA methods.



قيم البحث

اقرأ أيضاً

Self-attention mechanism recently achieves impressive advancement in Natural Language Processing (NLP) and Image Processing domains. And its permutation invariance property makes it ideally suitable for point cloud processing. Inspired by this remark able success, we propose an end-to-end architecture, dubbed Cross-Level Cross-Scale Cross-Attention Network (CLCSCANet), for point cloud representation learning. First, a point-wise feature pyramid module is introduced to hierarchically extract features from different scales or resolutions. Then a cross-level cross-attention is designed to model long-range inter-level and intra-level dependencies. Finally, we develop a cross-scale cross-attention module to capture interactions between-and-within scales for representation enhancement. Compared with state-of-the-art approaches, our network can obtain competitive performance on challenging 3D object classification, point cloud segmentation tasks via comprehensive experimental evaluation.
In the field of large-scale SLAM for autonomous driving and mobile robotics, 3D point cloud based place recognition has aroused significant research interest due to its robustness to changing environments with drastic daytime and weather variance. Ho wever, it is time-consuming and effort-costly to obtain high-quality point cloud data for place recognition model training and ground truth for registration in the real world. To this end, a novel registration-aided 3D domain adaptation network for point cloud based place recognition is proposed. A structure-aware registration network is introduced to help to learn features with geometric information and a 6-DoFs pose between two point clouds with partial overlap can be estimated. The model is trained through a synthetic virtual LiDAR dataset through GTA-V with diverse weather and daytime conditions and domain adaptation is implemented to the real-world domain by aligning the global features. Our results outperform state-of-the-art 3D place recognition baselines or achieve comparable on the real-world Oxford RobotCar dataset with the visualization of registration on the virtual dataset.
Features that are equivariant to a larger group of symmetries have been shown to be more discriminative and powerful in recent studies. However, higher-order equivariant features often come with an exponentially-growing computational cost. Furthermor e, it remains relatively less explored how rotation-equivariant features can be leveraged to tackle 3D shape alignment tasks. While many past approaches have been based on either non-equivariant or invariant descriptors to align 3D shapes, we argue that such tasks may benefit greatly from an equivariant framework. In this paper, we propose an effective and practical SE(3) (3D translation and rotation) equivariant network for point cloud analysis that addresses both problems. First, we present SE(3) separable point convolution, a novel framework that breaks down the 6D convolution into two separable convolutional operators alternatively performed in the 3D Euclidean and SO(3) spaces. This significantly reduces the computational cost without compromising the performance. Second, we introduce an attention layer to effectively harness the expressiveness of the equivariant features. While jointly trained with the network, the attention layer implicitly derives the intrinsic local frame in the feature space and generates attention vectors that can be integrated into different alignment tasks. We evaluate our approach through extensive studies and visual interpretations. The empirical results demonstrate that our proposed model outperforms strong baselines in a variety of benchmarks
We present a novel and flexible architecture for point cloud segmentation with dual-representation iterative learning. In point cloud processing, different representations have their own pros and cons. Thus, finding suitable ways to represent point c loud data structure while keeping its own internal physical property such as permutation and scale-invariant is a fundamental problem. Therefore, we propose our work, DRINet, which serves as the basic network structure for dual-representation learning with great flexibility at feature transferring and less computation cost, especially for large-scale point clouds. DRINet mainly consists of two modules called Sparse Point-Voxel Feature Extraction and Sparse Voxel-Point Feature Extraction. By utilizing these two modules iteratively, features can be propagated between two different representations. We further propose a novel multi-scale pooling layer for pointwise locality learning to improve context information propagation. Our network achieves state-of-the-art results for point cloud classification and segmentation tasks on several datasets while maintaining high runtime efficiency. For large-scale outdoor scenarios, our method outperforms state-of-the-art methods with a real-time inference speed of 62ms per frame.
134 - Ziyu Zhang , Feipeng Da , Yi Yu 2019
Point clouds-based Networks have achieved great attention in 3D object classification, segmentation and indoor scene semantic parsing. In terms of face recognition, 3D face recognition method which directly consume point clouds as input is still unde r study. Two main factors account for this: One is how to get discriminative face representations from 3D point clouds using deep network; the other is the lack of large 3D training dataset. To address these problems, a data-free 3D face recognition method is proposed only using synthesized unreal data from statistical 3D Morphable Model to train a deep point cloud network. To ease the inconsistent distribution between model data and real faces, different point sampling methods are used in train and test phase. In this paper, we propose a curvature-aware point sampling(CPS) strategy replacing the original furthest point sampling(FPS) to hierarchically down-sample feature-sensitive points which are crucial to pass and aggregate features deeply. A PointNet++ like Network is used to extract face features directly from point clouds. The experimental results show that the network trained on generated data generalizes well for real 3D faces. Fine tuning on a small part of FRGCv2.0 and Bosphorus, which include real faces in different poses and expressions, further improves recognition accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا