ﻻ يوجد ملخص باللغة العربية
We demonstrate a new approach to Neural Machine Translation (NMT) for low-resource languages using a ubiquitous linguistic resource, Interlinear Glossed Text (IGT). IGT represents a non-English sentence as a sequence of English lemmas and morpheme labels. As such, it can serve as a pivot or interlingua for NMT. Our contribution is four-fold. Firstly, we pool IGT for 1,497 languages in ODIN (54,545 glosses) and 70,918 glosses in Arapaho and train a gloss-to-target NMT system from IGT to English, with a BLEU score of 25.94. We introduce a multilingual NMT model that tags all glossed text with gloss-source language tags and train a universal system with shared attention across 1,497 languages. Secondly, we use the IGT gloss-to-target translation as a key step in an English-Turkish MT system trained on only 865 lines from ODIN. Thirdly, we we present five metrics for evaluating extremely low-resource translation when BLEU is no longer sufficient and evaluate the Turkish low-resource system using BLEU and also using accuracy of matching nouns, verbs, agreement, tense, and spurious repetition, showing large improvements.
One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restrict
Paraphrases, the rewordings of the same semantic meaning, are useful for improving generalization and translation. However, prior works only explore paraphrases at the word or phrase level, not at the sentence or corpus level. Unlike previous works t
Neural approaches have achieved state-of-the-art accuracy on machine translation but suffer from the high cost of collecting large scale parallel data. Thus, a lot of research has been conducted for neural machine translation (NMT) with very limited
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languag
Multilingual neural machine translation (MNMT) learns to translate multiple language pairs with a single model, potentially improving both the accuracy and the memory-efficiency of deployed models. However, the heavy data imbalance between languages