ﻻ يوجد ملخص باللغة العربية
The past decade has welcomed the emergence of cosmic neutrinos as a new messenger to explore the most extreme environments of the universe. The discovery measurement of cosmic neutrinos, announced by IceCube in 2013, has opened a new window of observation that has already resulted in new fundamental information that holds the potential to answer key questions associated with the high-energy universe, including: what are the sources in the PeV sky and how do they drive particle acceleration; where are cosmic rays of extreme energies produced, and on which paths do they propagate through the universe; and are there signatures of new physics at TeV-PeV energies and above? The planned advancements in neutrino telescope arrays in the next decade, in conjunction with continued progress in broad multimessenger astrophysics, promise to elevate the cosmic neutrino field from the discovery to the precision era and to a survey of the sources in the neutrino sky. The planned detector upgrades to the IceCube Neutrino Observatory, culminating in IceCube-Gen2 (an envisaged $400M facility with anticipated operation in the next decade, described in this white paper) are the cornerstone that will drive the evolution of neutrino astrophysics measurements.
Papers on research & development towards IceCube-Gen2, the next generation neutrino observatory at South Pole, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube-Gen2 Collaboration.
In 2016, IceCube initiated a system of public real-time alerts that are typically issued within one minute, following the detection of a neutrino candidate event that is likely to be of astrophysical origin. The goal of these alerts is to enable mult
The IceCube Neutrino Observatory opened the window on neutrino astronomy by discovering high-energy astrophysical neutrinos in 2013 and identifying the first compelling astrophysical neutrino source, the blazar TXS0506+056, in 2017. In this talk, we
The large next generation liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) offers an excellent opportunity for neutrino oscillometry. The characteristic spatial pattern of very low monoenergetic neutrino disappearance from artificial
RNO is the mid-scale discovery instrument designed to make the first observation of neutrinos from the cosmos at extreme energies, with sensitivity well beyond current instrument capabilities. This new observatory will be the largest ground-based neu