ﻻ يوجد ملخص باللغة العربية
Neutron imaging is one of the key technologies for non-destructive transmission testing. Recent progress in the development of intensive neutron sources allows us to perform energy-resolved neutron imaging with high spatial resolution. Substantial efforts have been devoted to developing a high spatial and temporal resolution neutron imager. We have been developing a neutron imager aiming at conducting high spatial and temporal resolution imaging based on a delay-line neutron detector, called the current-biased kinetic-inductance detector, with a conversion layer $^{10}$B. The detector allowed us to obtain a neutron transmission image with four signal readout lines. Herein, we expanded the sensor active area, and improved the spatial resolution of the detector. We examined the capability of high spatial resolution neutron imaging over the sensor active area of 15 $times$ 15 mm$^2$ for various samples, including biological and metal ones. We also demonstrated an energy-resolved neutron image in which stainless-steel specimens were discriminating of other specimens with the aid of the Bragg edge transmission.
Samples were examined using a superconducting (Nb) neutron imaging system employing a delay-line technique which in previous studies was shown to have high spatial resolution. We found excellent correspondence between neutron transmission and scannin
We present a detailed study of the spatial resolution of our time-resolved neutron imaging detector utilizing a new neutron position reconstruction method that improves both spatial resolution and event reconstruction efficiency. Our prototype detect
Superconducting detectors are a modern technology applied in various fields. The microwave kinetic inductance detector (MKID) is one of cutting-edge superconducting detector. It is based on the principle of a superconducting resonator circuit. A radi
One of the advantages of kinetic inductance detectors is their intrinsic frequency domain multiplexing capability. However, fabrication imperfections usually give rise to resonance frequency deviations, which create frequency collision and limit the
The energy resolution of a single photon counting Microwave Kinetic Inductance Detector (MKID) can be degraded by noise coming from the primary low temperature amplifier in the detectors readout system. Until recently, quantum limited amplifiers have