ترغب بنشر مسار تعليمي؟ اضغط هنا

Sterile neutrinos with altered dispersion relations revisited

114   0   0.0 ( 0 )
 نشر من قبل Pablo Mart\\'inez-Mirav\\'e
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate neutrino oscillations with altered dispersion relations in the presence of sterile neutrinos. Modified dispersion relations represent an agnostic way to parameterize new physics. Models of this type have been suggested to explain global neutrino oscillation data, including deviations from the standard three-neutrino paradigm as observed by a few experiments. We show that, unfortunately, in this type of models new tensions arise turning them incompatible with global data.



قيم البحث

اقرأ أيضاً

Big Bang Nucleosynthesis imposes stringent bounds on light sterile neutrinos mixing with the active flavors. Here we discuss how altered dispersion relations can weaken such bounds and allow compatibility of new sterile neutrino degrees of freedom wi th a successful generation of the light elements in the early Universe.
We revise the bounds on heavy sterile neutrinos, especially in the case of their mixing with muon neutrinos in the charged current. We summarize the present experimental limits, and we reanalyze the existing data from the accelerator neutrino experim ents and from Super-Kamiokande to set new bounds on a heavy sterile neutrino in the range of masses from 8 MeV to 390 MeV. We also discuss how the future accelerator neutrino experiments can improve the present limits.
We present a dispersive analysis of the decay amplitude for $etatoetapipi$ that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representati on relies only on input for the $pipi$ and $pieta$ scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity. We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the prediction of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory.
We use the LHC Higgs data to derive updated constraints on electroweak-scale sterile neutrinos that naturally occur in many low-scale seesaw extensions of the Standard Model to explain the neutrino masses. We also analyze the signal sensitivity for a new final state involving a single charged lepton and two jets with missing energy, which arises from the decay of sterile neutrinos produced through the Higgs and $W,Z$ boson mediated processes at the LHC. Future prospects of these sterile neutrino signals in precision Higgs measurements, as well as at a future 100 TeV collider, are also discussed.
The transition magnetic moment of a sterile-to-active neutrino conversion gives rise to not only radiative decay of a sterile neutrino, but also its non-standard interaction (NSI) with matter. For sterile neutrinos of keV-mass as dark matter candidat es, their decay signals are actively searched for in cosmic X-ray spectra. In this work, we consider the NSI that leads to atomic ionization, which can be detected by direct dark matter experiments. It is found that this inelastic scattering process for a nonrelativistic sterile neutrino has a pronounced enhancement in the differential cross section at energy transfer about half of its mass, manifesting experimentally as peaks in the measurable energy spectra. The enhancement effects gradually smear out as the sterile neutrino becomes relativistic. Using data taken with germanium detectors that have fine energy resolution in keV and sub-keV regimes, constraints on sterile neutrino mass and its transition magnetic moment are derived and compared with those from astrophysical observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا