ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Update: TDMA or FDMA?

72   0   0.0 ( 0 )
 نشر من قبل Haoyuan Pan
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies information freshness in information update systems operated with TDMA and FDMA. Information freshness is characterized by a recently introduced metric, age of information (AoI), defined as the time elapsed since the generation of the last successfully received update. In an update system with multiple users sharing the same wireless channel to send updates to a common receiver, how to divide the channel among users affects information freshness. We investigate the AoI performances of two fundamental multiple access schemes, TDMA and FDMA. We first derive the time-averaged AoI by estimating the packet error rate of short update packets based on Gallagers random coding bound. For time-critical systems, we further define a new AoI metric, termed bounded AoI, which corresponds to an AoI threshold for the instantaneous AoI. Specifically, the instantaneous AoI is below the bounded AoI a large percentage of the time. We give a theoretical upper bound for bounded AoI. Our simulation results are consistent with our theoretical analysis. Although TDMA outperforms FDMA in terms of average AoI, FDMA is more robust against varying channel conditions since it gives a more stable bounded AoI across different received powers. Overall, our findings give insight to the design of practical multiple access systems with AoI requirements.



قيم البحث

اقرأ أيضاً

The high reflect beamforming gain of the intelligent reflecting surface (IRS) makes it appealing not only for wireless information transmission but also for wireless power transfer. In this letter, we consider an IRS-assisted wireless powered communi cation network, where a base station (BS) transmits energy to multiple users grouped into multiple clusters in the downlink, and the clustered users transmit information to the BS in the manner of hybrid non-orthogonal multiple access and time division multiple access in the uplink. We investigate optimizing the reflect beamforming of the IRS and the time allocation among the BSs power transfer and different user clusters information transmission to maximize the throughput of the network, and we propose an efficient algorithm based on the block coordinate ascent, semidefinite relaxation, and sequential rank-one constraint relaxation techniques to solve the resultant problem. Simulation results have verified the effectiveness of the proposed algorithm and have shown the impact of user clustering setup on the throughput performance of the network.
An intelligent reflecting surface (IRS)-aided wireless powered mobile edge computing (WP-MEC) system is conceived, where each devices computational task can be divided into two parts for local computing and offloading to mobile edge computing (MEC) s ervers, respectively. Both time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) schemes are considered for uplink (UL) offloading. Given the capability of IRSs in intelligently reconfiguring wireless channels over time, it is fundamentally unknown which multiple access scheme is superior for MEC UL offloading. To answer this question, we first investigate the impact of three different dynamic IRS beamforming (DIBF) schemes on the computation rate of both offloading schemes, based on the flexibility for the IRS in adjusting its beamforming (BF) vector in each transmission frame. Under the DIBF framework, computation rate maximization problems are formulated for both the NOMA and TDMA schemes, respectively, by jointly optimizing the IRS passive BF and the resource allocation. We rigorously prove that offloading adopting TDMA can achieve the same computation rate as that of NOMA, when all the devices share the same IRS BF vector during the UL offloading. By contrast, offloading exploiting TDMA outperforms NOMA, when the IRS BF vector can be flexibly adapted for UL offloading. Despite the non-convexity of the computation rate maximization problems for each DIBF scheme associated with highly coupled optimization variables, we conceive computationally efficient algorithms by invoking alternating optimization. Our numerical results demonstrate the significant performance gains achieved by the proposed designs over various benchmark schemes.
Age of Information (AoI), defined as the time elapsed since the generation of the latest received update, is a promising performance metric to measure data freshness for real-time status monitoring. In many applications, status information needs to b e extracted through computing, which can be processed at an edge server enabled by mobile edge computing (MEC). In this paper, we aim to minimize the average AoI within a given deadline by jointly scheduling the transmissions and computations of a series of update packets with deterministic transmission and computing times. The main analytical results are summarized as follows. Firstly, the minimum deadline to guarantee the successful transmission and computing of all packets is given. Secondly, a emph{no-wait computing} policy which intuitively attains the minimum AoI is introduced, and the feasibility condition of the policy is derived. Finally, a closed-form optimal scheduling policy is obtained on the condition that the deadline exceeds a certain threshold. The behavior of the optimal transmission and computing policy is illustrated by numerical results with different values of the deadline, which validates the analytical results.
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons ider a point-to-point MEC system, where the device harvests energy from the access points (APs) transmitted signal to power the offloading and/or the local computation of a task. By taking into account the non-linearities of energy harvesting, we provide analytical expressions for the probability of successful computation and for the average number of successfully computed bits. Our results show that a hybrid scheme of partial offloading and local computation is not always efficient. In particular, the decision to offload and/or compute locally, depends on the systems parameters such as the distance to the AP and the number of bits that need to be computed.
Achievable information rates are used as a metric to design novel modulation formats via geometric shaping. The proposed geometrically shaped 256-ary constellation achieves SNR gains of up to 1.18 dB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا