Threshold values in population dynamics can be formulated as spectral bounds of matrices, determining the dichotomy of population persistence and extinction. For a square matrix $mu A + Q$, where $A$ is a quasi-positive matrix describing population dispersal among patches in a heterogeneous environment and $Q$ is a diagonal matrix encoding within-patch population dynamics, the monotonicy of its spectral bound with respect to dispersal speed/coupling strength/travel frequency $mu$ is established via two methods. The first method is an analytic derivation utilizing a graph-theoretic approach based on Kirchhoffs Matrix-Tree Theorem; the second method employs Collatz-Wielandt formula from matrix theory and complex analysis arguments. It turns out that our established result is a slightly strengthen version of Karlin-Altenbergs Theorem, which has previously been discovered independently while investigating reduction principle in evolution biology and evolution dispersal in patchy landscapes. Nevertheless, our result provides a new and effective approach in stability analysis of complex biological systems in a heterogeneous environment. We illustrate this by applying our result to well-known ecological models of single species, predator-prey and competition, and an epidemiological model of susceptible-infected-susceptible (SIS) type. We successfully solve some open problems in the literature of population dynamics.