ﻻ يوجد ملخص باللغة العربية
We apply the Fourier Power Function Shapelets (FPFS) shear estimator to the first year data of the Hyper Suprime-Cam survey to construct a shape catalog. The FPFS shear estimator has been demonstrated to have multiplicative bias less than $1%$ in the absence of blending, regardless of complexities of galaxy shapes, smears of point spread functions (PSFs) and contamination from noise. The blending bias is calibrated with realistic image simulations, which include the impact of neighboring objects, using the COSMOS Hubble Space Telescope images. Here we carefully test the influence of PSF model residual on the FPFS shear estimation and the uncertainties in the shear calibration. Internal null tests are conducted to characterize potential systematics in the FPFS shape catalog and the results are compared with those measured using a catalog where the shapes were estimated using the re-Gaussianization algorithms. Furthermore, we compare various weak lensing measurements between the FPFS shape catalog and the re-Gaussianization shape catalog and conclude that the weak lensing measurements between these two shape catalogs are consistent with each other within the statistical uncertainty.
We present and characterize the catalog of galaxy shape measurements that will be used for cosmological weak lensing measurements in the Wide layer of the first year of the Hyper Suprime-Cam (HSC) survey. The catalog covers an area of 136.9 deg$^2$ s
We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137deg$^2$ of the sky. Thanks to the high effective galaxy number density of $sim$17 arcmin$^{-2}$ even after conserva
We present the galaxy shear catalog that will be used for the three-year cosmological weak gravitational lensing analyses using data from the Wide layer of the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. The galaxy shapes are measu
We analyze the clustering of galaxies in the first public data release of the HSC Subaru Strategic Program. Despite the relatively small footprints of the observed fields, the data are an excellent proxy for the deep photometric datasets that will be
Using Subaru Hyper Suprime-Cam (HSC) year 1 data, we perform the first $k$-cut cosmic shear analysis constraining both $Lambda$CDM and $f(R)$ Hu-Sawicki modified gravity. To generate the $f(R)$ cosmic shear theory vector, we use the matter power spec