ترغب بنشر مسار تعليمي؟ اضغط هنا

Lie symmetries of two-dimensional shallow water equations with variable bottom topography

168   0   0.0 ( 0 )
 نشر من قبل Roman Popovych
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carry out the group classification of the class of two-dimensional shallow water equations with variable bottom topography using an optimized version of the method of furcate splitting. The equivalence group of this class is found by the algebraic method. Using algebraic techniques, we construct additional point equivalences between some of the listed cases of Lie-symmetry extensions, which are inequivalent up to transformations from the equivalence group.



قيم البحث

اقرأ أيضاً

We classify zeroth-order conservation laws of systems from the class of two-dimensional shallow water equations with variable bottom topography using an optimized version of the method of furcate splitting. The classification is carried out up to equ ivalence generated by the equivalence group of this class. We find additional point equivalences between some of the listed cases of extensions of the space of zeroth-order conservation laws, which are inequivalent up to transformations from the equivalence group. Hamiltonian structures of systems of shallow water equations are used for relating the classification of zeroth-order conservation laws of these systems to the classification of their Lie symmetries. We also construct generating sets of such conservation laws under action of Lie symmetries.
The regularisation of nonlinear hyperbolic conservation laws has been a problem of great importance for achieving uniqueness of weak solutions and also for accurate numerical simulations. In a recent work, the first two authors proposed a so-called H amiltonian regularisation for nonlinear shallow water and isentropic Euler equations. The characteristic property of this method is that the regularisation of solutions is achieved without adding any artificial dissipation or ispersion. The regularised system possesses a Hamiltonian structure and, thus, formally preserves the corresponding energy functional. In the present article we generalise this approach to shallow water waves over general, possibly time-dependent, bottoms. The proposed system is solved numerically with continuous Galerkin method and its solutions are compared with the analogous solutions of the classical shallow water and dispersive Serre-Green-Naghdi equations. The numerical results confirm the absence of dispersive and dissipative effects in presence of bathymetry variations.
We obtain new gauge-invariant forms of two-dimensional integrable systems of nonlinear equations: the Sawada-Kotera and Kaup-Kuperschmidt system, the generalized system of dispersive long waves, and the Nizhnik-Veselov-Novikov system. We show how the se forms imply both new and well-known two-dimensional integrable nonlinear equations: the Sawada-Kotera equation, Kaup-Kuperschmidt equation, dispersive long-wave system, Nizhnik-Veselov-Novikov equation, and modified Nizhnik-Veselov-Novikov equation. We consider Miura-type transformations between nonlinear equations in different gauges.
New manifestly gauge-invariant forms of two-dimensional generalized dispersive long-wave and Nizhnik-Veselov-Novikov systems of integrable nonlinear equations are presented. It is shown how in different gauges from such forms famous two-dimensional g eneralization of dispersive long-wave system of equations, Nizhnik-Veselov-Novikov and modified Nizhnik-Veselov-Novikov equations and other known and new integrable nonlinear equations arise. Miura-type transformations between nonlinear equations in different gauges are considered.
We develop an adjoint approach for recovering the topographical function included in the source term of one-dimensional hyperbolic balance laws. We focus on a specific system, namely the shallow water equations, in an effort to recover the riverbed t opography. The novelty of this work is the ability to robustly recover the bottom topography using only noisy boundary data from one measurement event and the inclusion of two regularization terms in the iterative update scheme. The adjoint scheme is determined from a linearization of the forward system and is used to compute the gradient of a cost function. The bottom topography function is recovered through an iterative process given by a three-operator splitting method which allows the feasibility to include two regularization terms. Numerous numerical tests demonstrate the robustness of the method regardless of the choice of initial guess and in the presence of discontinuities in the solution of the forward problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا