ﻻ يوجد ملخص باللغة العربية
Molecular systems are materials that intersect with many different promising fields such as organic/molecular electronics and spintronics, organic magnetism and quantum computing1-7. Particularly, magnetism in organic materials is very intriguing: the possibility to realize long-range magnetic order in completely metal-free systems means that magnetic moments are coupled to useful properties of organic materials, such as optical transparency, low-cost fabrication, and flexible chemical design. Magnetic ordering in light elements, such as nitrogen and carbon, has been studied in magnetic-edged graphene nanoribbons8 and bilayers9, and polymers10 while in organic thin films most of the investigations show this effect as due to the proximity of light atoms to heavy metals, impurities, or vacancies11. Purely organic radicals are molecules that carry one unpaired electron giving rise to a permanent magnetic moment, in the complete absence of metal ions.12-14 Inspired by their tremendous potential, here we investigate thin films of an exceptionally chemically stable Blatter radical derivative15 by using X-ray magnetic circular dichroism (XMCD)16-18. Here we observe XMCD at the nitrogen K-edge. Our results show a magnetic ordering different than in the single crystals and calculations indicate, although weak, a long-range intermolecular coupling. We anticipate our work to be a starting point for investigating and modelling magnetic behaviour in purely organic thin films. The tuning of the magnetic properties by the molecular arrangement in organic films is an exciting perspective towards revealing new properties and applications.
We show that using epitaxial strain and chemical pressure in orthorhombic YMnO3 and Co-substituted (YMn0.95Co0.05O3) thin films, a ferromagnetic response can be gradually introduced and tuned. These results, together with the measured anisotropy of t
Epitaxial thin films of multiferroic perovskite BiMnO3 were synthesized on SrTiO3 substrates, and orbital ordering and magnetic properties of the thin films were investigated. The ordering of the Mn^{3+} e_g orbitals at a wave vector (1/4 1/4 1/4) wa
The resistance of chemically synthesized polypyrrole (PPy) thin films is investigated as a function of the pressure of various gases as well as of the film thickness. A physical, piezoresistive response is found to coexist with a chemical response if
We have investigated the magnetic damping of precessional spin dynamics in defect-controlled epitaxial grown Fe$_3$O$_4$(111)/Yttria-stabilized Zirconia (YSZ) nanoscale films by all-optical pump-probe measurements. The intrinsic damping constant of t
We investigated domain kinetics by measuring the polarization switching behaviors of polycrystalline Pb(Zr,Ti)O$_{3}$ films, which are widely used in ferroelectric memory devices. Their switching behaviors at various electric fields and temperatures