ترغب بنشر مسار تعليمي؟ اضغط هنا

Metric Learning for Dynamic Text Classification

129   0   0.0 ( 0 )
 نشر من قبل Jeremy Wohlwend
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional text classifiers are limited to predicting over a fixed set of labels. However, in many real-world applications the label set is frequently changing. For example, in intent classification, new intents may be added over time while others are removed. We propose to address the problem of dynamic text classification by replacing the traditional, fixed-size output layer with a learned, semantically meaningful metric space. Here the distances between textual inputs are optimized to perform nearest-neighbor classification across overlapping label sets. Changing the label set does not involve removing parameters, but rather simply adding or removing support points in the metric space. Then the learned metric can be fine-tuned with only a few additional training examples. We demonstrate that this simple strategy is robust to changes in the label space. Furthermore, our results show that learning a non-Euclidean metric can improve performance in the low data regime, suggesting that further work on metric spaces may benefit low-resource research.



قيم البحث

اقرأ أيضاً

Most recent neural semi-supervised learning algorithms rely on adding small perturbation to either the input vectors or their representations. These methods have been successful on computer vision tasks as the images form a continuous manifold, but a re not appropriate for discrete input such as sentence. To adapt these methods to text input, we propose to decompose a neural network $M$ into two components $F$ and $U$ so that $M = Ucirc F$. The layers in $F$ are then frozen and only the layers in $U$ will be updated during most time of the training. In this way, $F$ serves as a feature extractor that maps the input to high-level representation and adds systematical noise using dropout. We can then train $U$ using any state-of-the-art SSL algorithms such as $Pi$-model, temporal ensembling, mean teacher, etc. Furthermore, this gradually unfreezing schedule also prevents a pretrained model from catastrophic forgetting. The experimental results demonstrate that our approach provides improvements when compared to state of the art methods especially on short texts.
Real-world text classification tasks often require many labeled training examples that are expensive to obtain. Recent advancements in machine teaching, specifically the data programming paradigm, facilitate the creation of training data sets quickly via a general framework for building weak models, also known as labeling functions, and denoising them through ensemble learning techniques. We present a fast, simple data programming method for augmenting text data sets by generating neighborhood-based weak models with minimal supervision. Furthermore, our method employs an iterative procedure to identify sparsely distributed examples from large volumes of unlabeled data. The iterative data programming techniques improve newer weak models as more labeled data is confirmed with human-in-loop. We show empirical results on sentence classification tasks, including those from a task of improving intent recognition in conversational agents.
The milestone improvements brought about by deep representation learning and pre-training techniques have led to large performance gains across downstream NLP, IR and Vision tasks. Multimodal modeling techniques aim to leverage large high-quality vis io-linguistic datasets for learning complementary information (across image and text modalities). In this paper, we introduce the Wikipedia-based Image Text (WIT) Dataset (https://github.com/google-research-datasets/wit) to better facilitate multimodal, multilingual learning. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal models, as we show when applied to downstream tasks such as image-text retrieval. WIT has four main and unique advantages. First, WIT is the largest multimodal dataset by the number of image-text examples by 3x (at the time of writing). Second, WIT is massively multilingual (first of its kind) with coverage over 100+ languages (each of which has at least 12K examples) and provides cross-lingual texts for many images. Third, WIT represents a more diverse set of concepts and real world entities relative to what previous datasets cover. Lastly, WIT provides a very challenging real-world test set, as we empirically illustrate using an image-text retrieval task as an example.
Unintended bias in Machine Learning can manifest as systemic differences in performance for different demographic groups, potentially compounding existing challenges to fairness in society at large. In this paper, we introduce a suite of threshold-ag nostic metrics that provide a nuanced view of this unintended bias, by considering the various ways that a classifiers score distribution can vary across designated groups. We also introduce a large new test set of online comments with crowd-sourced annotations for identity references. We use this to show how our metrics can be used to find new and potentially subtle unintended bias in existing public models.
Deep learning models have become state of the art for natural language processing (NLP) tasks, however deploying these models in production system poses significant memory constraints. Existing compression methods are either lossy or introduce signif icant latency. We propose a compression method that leverages low rank matrix factorization during training,to compress the word embedding layer which represents the size bottleneck for most NLP models. Our models are trained, compressed and then further re-trained on the downstream task to recover accuracy while maintaining the reduced size. Empirically, we show that the proposed method can achieve 90% compression with minimal impact in accuracy for sentence classification tasks, and outperforms alternative methods like fixed-point quantization or offline word embedding compression. We also analyze the inference time and storage space for our method through FLOP calculations, showing that we can compress DNN models by a configurable ratio and regain accuracy loss without introducing additional latency compared to fixed point quantization. Finally, we introduce a novel learning rate schedule, the Cyclically Annealed Learning Rate (CALR), which we empirically demonstrate to outperform other popular adaptive learning rate algorithms on a sentence classification benchmark.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا