ﻻ يوجد ملخص باللغة العربية
We consider a novel setting of zeroth order non-convex optimization, where in addition to querying the function value at a given point, we can also duel two points and get the point with the larger function value. We refer to this setting as optimization with dueling-choice bandits since both direct queries and duels are available for optimization. We give the COMP-GP-UCB algorithm based on GP-UCB (Srinivas et al., 2009), where instead of directly querying the point with the maximum Upper Confidence Bound (UCB), we perform a constrained optimization and use comparisons to filter out suboptimal points. COMP-GP-UCB comes with theoretical guarantee of $O(frac{Phi}{sqrt{T}})$ on simple regret where $T$ is the number of direct queries and $Phi$ is an improved information gain corresponding to a comparison based constraint set that restricts the search space for the optimum. In contrast, in the direct query only setting, $Phi$ depends on the entire domain. Finally, we present experimental results to show the efficacy of our algorithm.
As application demands for zeroth-order (gradient-free) optimization accelerate, the need for variance reduced and faster converging approaches is also intensifying. This paper addresses these challenges by presenting: a) a comprehensive theoretical
We introduce the dueling teams problem, a new online-learning setting in which the learner observes noisy comparisons of disjoint pairs of $k$-sized teams from a universe of $n$ players. The goal of the learner is to minimize the number of duels requ
A version of the dueling bandit problem is addressed in which a Condorcet winner may not exist. Two algorithms are proposed that instead seek to minimize regret with respect to the Copeland winner, which, unlike the Condorcet winner, is guaranteed to
We consider the problem of learning to choose actions using contextual information when provided with limited feedback in the form of relative pairwise comparisons. We study this problem in the dueling-bandits framework of Yue et al. (2009), which we
Bandit Convex Optimization (BCO) is a fundamental framework for modeling sequential decision-making with partial information, where the only feedback available to the player is the one-point or two-point function values. In this paper, we investigate