ﻻ يوجد ملخص باللغة العربية
Mining tasks over sequential data, such as clickstreams and gene sequences, require a careful design of embeddings usable by learning algorithms. Recent research in feature learning has been extended to sequential data, where each instance consists of a sequence of heterogeneous items with a variable length. However, many real-world applications often involve attributed sequences, where each instance is composed of both a sequence of categorical items and a set of attributes. In this paper, we study this new problem of attributed sequence embedding, where the goal is to learn the representations of attributed sequences in an unsupervised fashion. This problem is core to many important data mining tasks ranging from user behavior analysis to the clustering of gene sequences. This problem is challenging due to the dependencies between sequences and their associated attributes. We propose a deep multimodal learning framework, called NAS, to produce embeddings of attributed sequences. The embeddings are task independent and can be used on various mining tasks of attributed sequences. We demonstrate the effectiveness of our embeddings of attributed sequences in various unsupervised learning tasks on real-world datasets.
Unsupervised attributed graph representation learning is challenging since both structural and feature information are required to be represented in the latent space. Existing methods concentrate on learning latent representation via reconstruction t
Attributed networks are ubiquitous since a network often comes with auxiliary attribute information e.g. a social network with user profiles. Attributed Network Embedding (ANE) has recently attracted considerable attention, which aims to learn unifie
Much of human knowledge is encoded in text, available in scientific publications, books, and the web. Given the rapid growth of these resources, we need automated methods to extract such knowledge into machine-processable structures, such as knowledg
Deep generative models (DGMs) have achieved remarkable advances. Semi-supervised variational auto-encoders (SVAE) as a classical DGM offer a principled framework to effectively generalize from small labelled data to large unlabelled ones, but it is d
Negative sampling, which samples negative triplets from non-observed ones in knowledge graph (KG), is an essential step in KG embedding. Recently, generative adversarial network (GAN), has been introduced in negative sampling. By sampling negative tr