ﻻ يوجد ملخص باللغة العربية
The formation and the evolution of protoplanetary disks are important stages in the lifetime of stars. The processes of disk evolution and planet formation are intrinsically linked. We spatially resolve with GRAVITY/VLTI in the K-band the sub au-scale region of 27 stars to gain statistical understanding of their properties. We look for correlations with stellar parameters, such as luminosity, mass, temperature and age. Our sample also cover a range of various properties in terms of reprocessed flux, flared or flat morphology, and gaps. We developed semi-physical geometrical models to fit our interferometric data. Our best models correspond to smooth and wide rings, implying that wedge-shaped rims at the dust sublimation edge are favored, as found in the H-band. The closure phases are generally non-null with a median value of ~10 deg, indicating spatial asymmetries of the intensity distributions. Multi-size grain populations could explain the closure phase ranges below 20-25 deg but other scenarios should be invoked to explain the largest ones. Our measurements extend the Radius-Luminosity relation to ~1e4 Lsun and confirm the significant spread around the mean relation observed in the H-band. Gapped sources exhibit a large N-to-K band size ratio and large values of this ratio are only observed for the members of our sample that would be older than 1 Ma, less massive, and with lower luminosity. In the 2 Ms mass range, we observe a correlation in the increase of the relative age with the transition from group II to group I, and an increase of the N-to-K size ratio. However, the size of the current sample does not yet permit us to invoke a clear universal evolution mechanism across the HAeBe mass range. The measured locations of the K-band emission suggest that these disks might be structured by forming young planets, rather than by depletion due to EUV, FUV, and X-ray photo-evaporation.
We seek to find the precursors of the Herbig Ae/Be stars in the solar vicinity within 500 pc from the Sun. We do this by creating an optically selected sample of intermediate mass T-Tauri stars (IMTT stars) here defined as stars of masses $1.5 M_{odo
The innermost astronomical unit in protoplanetary disks is a key region for stellar and planet formation, as exoplanet searches have shown a large occurrence of close-in planets that are located within the first au around their host star. We aim to r
Infrared and (sub-)mm observations of disks around T Tauri and Herbig Ae/Be stars point to a chemical differentiation between both types of disks, with a lower detection rate of molecules in disks around hotter stars. To investigate the potential und
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred di
We present the results of a study of the temporal behaviour of several diagnostic lines formed in the region of the accretion-disk/star interaction in the three magnetic Herbig Ae stars HD101412, HD104237, and HD190073. More than 100 spectra acquired