ﻻ يوجد ملخص باللغة العربية
We initiate the study of local topology of random graphs. The high level goal is to characterize local motifs in graphs. In this paper, we consider what we call the layer-$r$ subgraphs for an input graph $G = (V,E)$: Specifically, the layer-$r$ subgraph at vertex $u in V$, denoted by $G_{u; r}$, is the induced subgraph of $G$ over vertex set $Delta_{u}^{r}:= left{v in V: d_G(u,v) = r right}$, where $d_G$ is shortest-path distance in $G$. Viewing a graph as a 1-dimensional simplicial complex, we then aim to study the $1$st Betti number of such subgraphs. Our main result is that the $1$st Betti number of layer-$1$ subgraphs in ErdH{o}s--Renyi random graphs $G(n,p)$ satisfies a central limit theorem.
We consider bootstrap percolation and diffusion in sparse random graphs with fixed degrees, constructed by configuration model. Every node has two states: it is either active or inactive. We assume that to each node is assigned a nonnegative (integer
It is an intriguing question to see what kind of information on the structure of an oriented graph $D$ one can obtain if $D$ does not contain a fixed oriented graph $H$ as a subgraph. The related question in the unoriented case has been an active are
Focusing on coupling between edges, we generalize the relationship between the normalized graph Laplacian and random walks on graphs by devising an appropriate normalization for the Hodge Laplacian -- the generalization of the graph Laplacian for sim
A classical result by Rado characterises the so-called partition-regular matrices $A$, i.e. those matrices $A$ for which any finite colouring of the positive integers yields a monochromatic solution to the equation $Ax=0$. We study the {sl asymmetric
The bandwidth theorem [Mathematische Annalen, 343(1):175--205, 2009] states that any $n$-vertex graph $G$ with minimum degree $(frac{k-1}{k}+o(1))n$ contains all $n$-vertex $k$-colourable graphs $H$ with bounded maximum degree and bandwidth $o(n)$. I