ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving Ultra-Fast Spin-Orbit Dynamics in Heavy Many-Electron Atoms

54   0   0.0 ( 0 )
 نشر من قبل Jack Wragg
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use R-Matrix with Time-dependence (RMT) theory, with spin-orbit effects included, to study krypton irradiated by two time-delayed XUV ultrashort pulses. The first pulse excites the atom to 4s$^{2}$4p$^{5}$5s. The second pulse then excites 4s4p$^{6}$5s autoionising levels, whose population can be observed through their subsequent decay. By varying the time delay between the two pulses, we are able to control the excitation pathway to the autoionising states. The use of cross-polarised light pulses allows us to isolate the two-photon pathway, with one photon taken from each pulse.



قيم البحث

اقرأ أيضاً

In two recent papers (Phys. Rev. Lett. {bf 116} (2016) 033201; Phys. Rev. A {bf 94} (2016) 032331), the possibility of continuously varying the degree of entanglement between an elastically scattered electron and the valence electron of an alkali tar get was discussed. In order to estimate how well such a scheme may work in practice, we present results for elastic electron scattering from lithium in the energy regime of 1$-$5~eV and the full range of scattering angles $0^circ - 180^circ$. The most promising regime for Bell-correlations in this particular collision system are energies between about 1.5 eV and 3.0 eV, in an angular range around $110^circ pm 10^circ$. In addition to the relative exchange asymmetry parameter, we present the differential cross section that is important when estimating the count rate and hence the feasibility of experiments using this system.
116 - Axel Schild , E.K.U. Gross 2016
We present a novel ab-initio single-electron approach to correlated electron dynamics in strong laser fields. By writing the electronic wavefunction as a product of a marginal one-electron wavefunction and a conditional wavefunction, we show that the exact harmonic spectrum can be obtained from a single-electron Schrodinger equation. To obtain the one-electron potential in practice, we propose an adiabatic approximation, i.e. a potential is generated that depends only on the position of one electron. This potential, together with the laser interaction, is then used to obtain the dynamics of the system. For a model Helium atom in a laser field, we show that by using our approach, the high-order harmonic generation spectrum can be obtained to a good approximation.
239 - V.M. Shabaev , I.I. Tupitsyn , 2013
A model operator approach to calculations of the QED corrections to energy levels in relativistic many-electron atomic systems is developed. The model Lamb shift operator is represented by a sum of local and nonlocal potentials which are defined usin g the results of ab initio calculations of the diagonal and nondiagonal matrix elements of the one-loop QED operator with H-like wave functions. The model operator can be easily included in any calculations based on the Dirac-Coulomb-Breit Hamiltonian. Efficiency of the method is demonstrated by comparison of the model QED operator results for the Lamb shifts in many-electron atoms and ions with exact QED calculations.
Two-level quantum systems with strong spin-orbit coupling allow for all-electrical qubit control and long-distance qubit coupling via microwave and phonon cavities, making them of particular interest for scalable quantum information technologies. In silicon, a strong spin-orbit coupling exists within the spin-3/2 system of acceptor atoms and their energy levels and properties are expected to be highly tunable. Here we show the influence of local symmetry tuning on the acceptor spin-dynamics, measured in the single-atom regime. Spin-selective tunneling between two coupled boron atoms in a commercial CMOS transistor is utilised for spin-readout, which allows for the probing of the two-hole spin relaxation mechanisms. A relaxation-hotspot is measured and explained by the mixing of acceptor heavy and light hole states. Furthermore, excited state spectroscopy indicates a magnetic field controlled rotation of the quantization axes of the atoms. These observations demonstrate the tunability of the spin-orbit states and dynamics of this spin-3/2 system.
351 - Shiyang Zhong 2020
The photoionization of xenon atoms in the 70-100 eV range reveals several fascinating physical phenomena such as a giant resonance induced by the dynamic rearrangement of the electron cloud after photon absorption, an anomalous branching ratio betwee n intermediate Xe$^+$ states separated by the spin-orbit interaction and multiple Auger decay processes. These phenomena have been studied in the past, using in particular synchrotron radiation, but without access to real-time dynamics. Here, we study the dynamics of Xe 4d photoionization on its natural time scale combining attosecond interferometry and coincidence spectroscopy. A time-frequency analysis of the involved transitions allows us to identify two interfering ionization mechanisms: the broad giant dipole resonance with a fast decay time less than 50 as and a narrow resonance at threshold induced by spin-flip transitions, with much longer decay times of several hundred as. Our results provide new insight into the complex electron-spin dynamics of photo-induced phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا